## International Journal of

Mechanical Engineering Research and Technology

## ISSN 2454-535X

Vol. 1, No. 2, November 2015


## Research Paper

# DESIGNING CASTING TOOL FOR PISTON HOUSI NG 

M Sathish Reddy ${ }^{1 *}$, M Ayyanna ${ }^{2}$, P Hussain ${ }^{\mathbf{3}}$ and S Sudhakar Babu ${ }^{4}$<br>*Corresponding Author: M Sathish Reddy, $\boxtimes$ reach2me1111@gmail.com


#### Abstract

An Oil filter is a filter to remove contaminants from engine oil, transmission oil, lubricating oil, or hydraulic oil. Oil filters are used in many different types of hydraulic machinery. Achief use of the oil filter is in internal-combustion engines in on- and off-road motor vehicles, light aircraft, and various naval vessels. Other vehicle hydraulic systems, such as those in automatic transmissions and power steering, are often equipped with an oil filter. Gas turbine engines, such as those on jet aircraft, require the use of oil filters. And oil production, transport, and recycling facilities employ filters. Parts of the hydraulic oil filter in our project are piston housing, shaft housing, top plate, crankshaft, and piston. The aim of the project is to model and design casting tool for piston housing which is used in a hydraulic oil filter pump having pressure $50 \mathrm{~kg} / \mathrm{cm}^{2}$, and temperature rating 300 deg C. In casting tool, we are designing core cavity, mould base plates. Calculations are to be done for cavity fill time, cavity fill rate, gate area, runner area, shot weight, die cooling calculations. CNC programming for core and cavity is to be done and for remaining manufacturing processes are to be done.


Keywords: Oil filter pump, Casting tool, Piston housing, 3D parametric software Pro/Engineer, CNC program

## I NTRODUCTI ON

Hydraulic machines are machinery and tools that use liquid fluid power to do simple work. Heavy equipment is a common example. In this type of machine, hydraulic fluid is transmitted throughout the machine to various hydraulic motors and hydraulic cylinders and which becomes pressurised according to the resistance present. The fluid is controlled
directly or automatically by control valves and distributed through hoses and tubes. The popularity of hydraulic machinery is due to the very large amount of power that can be transferred through small tubes and flexible hoses, and the high power density and wide array of actuators that can make use of this power. Hydraulic machinery is operated by the use of hydraulics, where a liquid is the powering medium.

[^0]An oil filter is a filter designed to remove contaminants from engine oil, transmission oil, lubricating oil, or hydraulic oil. Oil filters are used in many different types of hydraulic machinery. A chief use of the oil filter is in internal-combustion engines in on- and offroad motor vehicles, light aircraft, and various naval vessels.

## Hydraulic Pump

Hydraulic pumps supply fluid to the components in the system. Pressure in the system develops in reaction to the load. Hence, a pump rated for 5,000 psi is capable of maintaining flow against a load of 5,000 psi. Pumps have a power density about ten times greater than an electric motor (by volume). They are powered by an electric motor or an engine, connected through gears, belts, or a flexible elastomeric coupling to reduce vibration.

## Casting

Casting is one of the oldest procedures done on metals. Many products are formed using this method. Here is an attempt to share the knowledge of casting.

## Cast Metals

The main die casting alloys are: zinc, aluminium, magnesium, copper, lead, and tin; although uncommon, ferrous die casting is possible. Specific dies casting alloys include: ZAMAK; zinc aluminium; aluminium to, e.g. The AluminumAssociation (AA) standards: AA 380, AA 384, AA 386, AA 390; and AZ91D magnesium.

The minimum section thickness and minimum draft required for a casting as outlined in the table below.

| Table 1 |  |  |  |
| :---: | :---: | :---: | :---: |
| S. No. | Metal | Minimum <br> Section | Minimum <br> Draft |
| 1 | Aluminium <br> alloys | 0.89 mm <br> $(0.035 \mathrm{in})$ | $1: 100\left(0.6^{\circ}\right)$ |
| 2 | Brass and <br> bronze | 1.27 mm <br> $(0.050 \mathrm{in})$ | $1: 80\left(0.7^{\circ}\right)$ |
| 3 | Magnesium <br> alloys | 1.27 mm <br> $(0.050 \mathrm{in})$ | $1: 100\left(0.6^{\circ}\right)$ |
| 4 | Zinc alloys | 0.63 mm <br> $(0.025 \mathrm{in})$ | $1: 200\left(0.3^{\circ}\right)$ |

## Equipment

There are two basic types of die casting machines: hot-chamber machines and coldchamber machines. These are rated by how much clamping force they can apply. Typical ratings are between 400 and $4,000^{\text {st }}(2,500$ and 25,000 kg).

## Hot-Chamber Machines

Hot-chamber machines, also known as gooseneck machines, rely upon a pool of molten metal to feed the die. At the beginning of the cycle the piston of the machine is

Figure 1: A Schematic of a Hot-Chamber Machine

retracted, which allows the molten metal to fill the "gooseneck". The pneumatic or hydraulic powered piston then forces this metal out of the gooseneck into the die. The advantages of this system include fast cycle times (approximately 15 cycles a minute) and the convenience of melting the metal in the casting machine. The disadvantages of this system are that high-melting point metals cannot be utilized and aluminium cannot be used because it picks up some of the iron while in the molten pool. Due to this, hot-chamber machines are primarily used with zinc, tin, and lead based alloys.

## Cold-Chamber Machines

Cold-chamber machines are used when the casting alloy cannot be used in hot-chamber machines; these include aluminium, zinc alloys with a large composition of aluminium, magnesium and copper. The process for these machines start with melting the metal in a separate furnace. Then a precise amount of molten metal is transported to the cold-

Figure 2: A Schematic of a Cold-Chamber Die Casting Machine

chamber machine where it is fed into an unheated shot chamber (or injection cylinder). This shot is then driven into the die by a hydraulic or mechanical piston. This biggest disadvantage of this system is the slower cycle time due to the need to transfer the molten metal from the furnace to the cold-chamber machine.

## Dies

Two dies are used in die casting; one is called the "cover die half" and the other the "ejector die half". Where they meet is called the parting line. The cover die contains the sprue (for hotchamber machines) or shot hole (for coldchamber machines), which allows the molten metal to flow into the dies; this feature matches up with the injector nozzle on the hot-chamber machines or the shot chamber in the coldchamber machines. The ejector die contains the ejector pins and usually the runner, which is the path from the sprue or shot hole to the mold cavity. The cover die is secured to the stationary, or front, platen of the casting machine, while the ejector die is attached to the movable platen. The mold cavity is cut into two cavity inserts, which are separate pieces


that can be replaced relatively easily and bolt into the die halves.

The dies are designed so that the finished casting will slide off the cover half of the die and stay in the ejector half as the dies are opened. This assures that the casting will be ejected every cycle because the ejector half contains the ejector pins to push the casting out of that die half. The ejector pins are driven by an ejector pin plate, which accurately drives all of the pins at the same time and with the same force, so that the casting is not damaged. The ejector pin plate also retracts the pins after ejecting the casting to prepare for the next shot. There must be enough ejector pins to keep the overall force on each pin low, because the casting is still hot and can be damaged by excessive force. The pins still leave a mark, so they must be located in places where these marks will not hamper the castings purpose.

The most important material properties for the dies are thermal shock resistance and softening at elevated temperature; other important properties include hardenability, machinability, heat checking resistance, weldability, availability (especially for larger
dies), and cost. The longevity of a die is directly dependent on the temperature of the molten metal and the cycle time. The dies used in die casting are usually made out of hardened tool steels, because cast iron cannot withstand the high pressures involved, therefore the dies are very expensive, resulting in high start-up costs. Metals that are cast at higher temperatures require dies made from higher alloy steels.

The main failure mode for die casting dies is wear or erosion. Other failure modes are heat checking and thermal fatigue. Heat checking is when surface cracks occur on the die due to a large temperature change on every cycle. Thermal fatigue is when surface cracks occur on the die due to a large number of cycles.

## MODELI NG AND CORE, CAVITY EXTRACTION IN PRO/ ENGI NEER

## Modeling

2-D Model with dimensions
3-D Modeling of the model

## Core and Cavity Extraction

Select New - Manufacturing - Mold Cavity enter name - Change units - ok.

Assemble the piston housing in to the manufacturing.

## Splitting the Volume in to Core and Cavity

Cavity 1
Cavity 2
Side Cavity

## Die Components

Back Plate for Cavity

| $\begin{gathered} \text { S. } \\ \text { No } \end{gathered}$ | Die Component | Cast Metal |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Tin, Lead \& Zinc |  | Aluminium \& Magnesium |  | Copper \& Brass |  |
|  |  | Material | Hardness | Material | Hardness | Material | Hardness |
| 1 | Cavity inserts | P20 | 290-330 HB | H13 | 42-48 HRC | DIN 1.2367 | 38-44 |
|  |  | H11 | 46-50 |  |  |  | HRC |
|  |  | H13 | $\frac{\text { HRC }}{46-50}$ | H11 | 42-48 HRC | $\begin{gathered} \mathrm{H} 20, \mathrm{H} 21, \\ \mathrm{H} 22 \end{gathered}$ | $44-48$ HRC |
|  |  | H13 | $\begin{gathered} \text { HRC } \\ \hline 46-52 \\ \text { HRC } \end{gathered}$ | H13 | 44-48 HRC | DIN 1.2367 | $\begin{gathered} 40-46 \\ \text { HRC } \end{gathered}$ |
| 2 | Cores |  |  | DIN 1.2367 | $\begin{gathered} \hline 42-48 \\ \text { HRC } \end{gathered}$ |  |  |
| 3 | Core Pins | H13 | 48-52 HRC | $\begin{gathered} \text { DIN } 1.2367 \\ \hline \text { Prehard } \\ \hline \end{gathered}$ | $\begin{gathered} \hline 37-40 \\ \text { HRC } \end{gathered}$ | DIN 1.2367 <br> Prehard | $\begin{gathered} \hline 37-40 \\ \text { HRC } \end{gathered}$ |
| 4 | Sprue Parts | H13 | 48-52 HRC | H13 <br> DIN 1.2367 | $\begin{gathered} \hline 46-48 \\ \text { HRC } \\ \hline 44-46 \\ \text { HRC } \end{gathered}$ | DIN 1.2367 | $\begin{gathered} 42-46 \\ \text { HRC } \end{gathered}$ |
| 5 | Nozzle | 420 | 48-52 HRC | H13 | $\begin{gathered} 42-48 \\ \text { HRC } \end{gathered}$ | $\frac{\text { DIN } 1.2367}{\text { H13 }}$ | $\begin{gathered} \hline 40-44 \\ \text { HRC } \\ \hline 42-48 \\ \text { HRC } \end{gathered}$ |
| 6 | Ejector Pins | H13 | 48-52 HRC | H13 | $\begin{gathered} 46-50 \\ \text { HRC } \end{gathered}$ | H13 | $\begin{aligned} & 46-50 \\ & \text { HRC } \end{aligned}$ |
| 7 | Plunger Shot | 13 | 48 | H13 | $\begin{aligned} & 42-48 \\ & \text { HRC } \end{aligned}$ | DIN 1.2367 | $\begin{aligned} & 42-46 \\ & \text { HRC } \end{aligned}$ |
| 7 | Sleeve | H13 | 48-52 HRC | DIN 1.2367 | $\begin{gathered} \hline 42-48 \\ \text { HRC } \end{gathered}$ | H13 | $\begin{aligned} & \hline 42-46 \\ & \text { HRC } \end{aligned}$ |
| 8 | Holder Block | $\begin{gathered} 4140 \\ \text { Prehard } \end{gathered}$ | $\sim 300$ HB | $4140$ <br> Prehard | $\sim 300 \mathrm{HB}$ | 4140 <br> Prehard | $\sim 300 \mathrm{HB}$ |


| Table 3: Typical Die Temperatures and Life for Various Cast Materials |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Zinc | Aluminium | Magnesium | Brass (Leaded <br> Yellow) |  |  |
| Maximum die life <br> [number of cycles] | $1,000,000$ | 100,000 | 100,000 | 10,000 |  |  |
| Die temperature $\left[\mathrm{C}^{\circ}\left(\mathrm{F}^{\circ}\right)\right]$ | $218(425)$ | $288(550)$ | $260(500)$ | $500(950)$ |  |  |
| Casting temperature $\left[\mathrm{C}^{\circ}\right.$ <br> $\left.\left(\mathrm{F}^{\circ}\right)\right]$ | $400(760)$ | $660(1220)$ | $760(1400)$ | $1090(2000)$ |  |  |

This article can be downloaded from http://www.ijmert.net/C urrent-Issue.php

Figure 5: 2-D Drawing of the Model


Figure 6: 3-D Model


Figure 8: Assembling the Model into Manufacturing ( Mold Cavity) Module Create a Work Piece and Parting Surface


Figure 9: Work Piece and Parting Surface


Figure 10: Cavity 1


This article can be downloaded from http://www.ijmert.net/C urrent-IIssue.php

Figure 11: Cavity 2


Figure 12: Side Cavity


Figure 14: Angular Pins


Figure 15: Spacer Housing


Figure 16: Plate


This article can be downloaded from http://www.ijmert.net/C urrent-Issue.php

Figure 17: Total Assembly of Die


Figure 18: Exploded View


Figure 19: Core in Manufacturing ( NC Assembly) Module Creating Workpiece


Figure 20: Work Piece for Core


Figure 21: Cutting Tool


Figure 22: Parameters for Roughing


This article can be downloaded from http://www.ijmert.net/C urrent-Issue.php


Figure 24: NC Check for Roughing


Angular Pins
Spacer Housing
Plate

## Total Assembly

Total assembly of die
Exploded View
Manufacturing Process
Core
Select New - Manufacturing - NC Assembly Enter name - Select units - ok

Retrieving the core in to manufacturing
Set up the machine tool by selecting type of machine, cutting tool, Machine zero and retract.

## For Roughing

Select NC sequence - Machining - Volume Done - Select tool and enter parameters like Cut feed, Step depth, Step over, Profile stock allow, rough stock allow, scan type and spindle speed.

Create volume.
Select Playpath
After completing Playpath, Select NC check
Machining $\rightarrow$ CL data $\rightarrow$ NC sequence $\rightarrow$ sequence $\rightarrow$ file $\rightarrow$ MCD file.

Done. Enter name. ok. Done.

## NC PROGRAM FOR ROUGHING PROCESS

\%
G71
00001
(D:Isalpistonhousing\seq0001.ncl.1)
N0010T1M06
S2500M03
G01G43X-88.099Y-76.462Z2.5F2350.H01
Z1.
Z-1.F3560.
X-122.901F2500.
G03X-129.162Y-81.294I17.401J29.026F2250.

G01X-81.838F2500.
G02X-77.745Y-86.125I-23.662J24.194F2250.

G01X-133.255F2500.
G03X-136.063Y-90.956I27.755J19.363F2250.

G01X-74.937F2500.
G02X-73.078Y-95.787I-30.563J14.532F2250.

G01X-137.922F2500.
G03X-138.99Y-100.618I32.422J-9.701 F2250.

G01X-72.01F2500.
G02X-71.658Y-105.449I-33.49J-4.87F2250. G01X-139.342F2500.

Y-105.488
G03X-139.001Y-110.28I33.842J0.F2250.
G01X-71.999F2500.
G02X-73.055Y-115.111I-33.501J4.792 F2250.

G01X-137.945F2500.
G03X-136.1Y-119.942I32.445J9.623F2250.
G01X-74.9F2500.
G02X-77.691Y-124.773I-30.6J14.454F2250. G01X-133.309F2500.

G03X-129.242Y-129.604I27.809J 19.285F2250.

G01X-81.758F2500.
G02X-87.97Y-134.435I-23.742J24. 116F2250.

G01X-123.03F2500.
G03X-107.57Y-139.266I17.53J28.947F2250.
G01X-103.43F2500.
G03X-103.43Y-139.266I-2.07J33.778F2250.

G02X-107.57Y-139.266I-2.07J33.778 G01Z-2.F3560. X-103.43F2500. G03X-87.97Y-134.435I-2.07J33.778F2250. G01X-123.03F2500.

G02X-129.242Y-129.604I17.53J 28.947F2250.

G01X-81.758F2500.
G03X-77.691Y-124.773I-23.742J 24.116F2250.

G01X-133.309F2500.
G02X-136.1Y-119.942I27.809J19.285F2250. G01X-74.9F2500.

G03X-73.055Y-115.111I-30.6J14.454F2250. G01X-137.945F2500.

G02X-139.001Y-110.28I32.445J9.623F2250.
G01X-71.999F2500.
G03X-71.658Y-105.488I-33.501J 4.792F2250.

G01Y-105.449F2500.
X-139.342
G02X-138.99Y-100.618I33.842J-.039F2250. G01X-72.01F2500.

G03X-73.078Y-95.787I-33.49J-4.87F2250.
G01X-137.922F2500.
G02X-136.063Y-90.956I32.422J9.701F2250.

G01X-74.937F2500.
G03X-77.745Y-86.125I-30.563J14.532F2250.

G01X-133.255F2500.
G02X-129.162Y-81.294I27.755J19.363F2250.

G01X-81.838F2500.
G03X-88.099Y-76.462I-23.662J24.194F2250.

G01X-122.901F2500.
G03X-122.901Y-76.462117.401J29.026F2250.

G01Z-3.F3560.
X-88.099F2500.
G02X-81.838Y-81.294I-17.401J29.026F2250.

G01X-129.162F2500.
G03X-133.255Y-86.125I23.662J24.194F2250.

G01X-77.745F2500.
G02X-74.937Y-90.956I-27.755J19.363F2250.

G01X-136.063F2500.
G03X-137.922Y-95.787130.563J14.532F2250.

G01X-73.078F2500.
G02X-72.01Y-100.618I-32.422J9.701F2250.

G01X-138.99F2500.
G03X-139.342Y-105.449I33.49J-4.87F2250.
G01X-71.658F2500.
Y-105.488
G02X-71.999Y-110.28I-33.842J0.F2250.
G01X-139.001F2500.

G03X-137.945Y-115.111133.501J 4.792F2250.

G01X-73.055F2500.
G02X-74.9Y-119.942I-32.445J9.623F2250. G01X-136.1F2500.

G03X-133.309Y-124.773I30.6J14.454F2250. G01X-77.691F2500.

G02X-81.758Y-129.604I-27.809J 19.285 F 2250.

G01X-129.242F2500.
G03X-123.03Y-134.435I23.742J 24.116F2250.

G01X-87.97F2500.
G02X-103.43Y-139.266I-17.53J 28.947F2250.

G01X-107.57F2500.
G03X-107.57Y-139.266I2.07J33.778F2250. G01Z-4.F3560.

X-103.43F2500.
G03X-87.97Y-134.435I-2.07J33.778F2250.
G01X-123.03F2500.
G02X-129.242Y-129.604I17.53J 28.947F2250.

G01X-81.758F2500.
G03X-77.691Y-124.773I-23.742J 24.116F2250.

G01X-133.309F2500.
G02X-136.1Y-119.942I27.809J19.285F2250.
G01X-74.9F2500.
G03X-73.055Y-115.111I-30.6J14.454F2250.
G01X-137.945F2500.

G02X-139.001Y-110.28I32.445J9.623F2250. G01X-71.999F2500.

G03X-71.658Y-105.488I-33.501J 4.792F2250.

G01Y-105.449F2500.
X-139.342
G02X-138.99Y-100.618I33.842J-.039F2250. G01X-72.01F2500.

G03X-73.078Y-95.787I-33.49J-4.87F2250.
G01X-137.922F2500.
G02X-136.063Y-90.956I32.422J9.701F2250.

G01X-74.937F2500.
G03X-77.745Y-86.125I-30.563J14.532F2250.

G01X-133.255F2500.
G02X-129.162Y-81.294I27.755J19.363F2250.

G01X-81.838F2500.
G03X-88.099Y-76.462I-23.662J24.194F2250.

G01X-122.901F2500.
G03X-122.901Y-76.462117.401J29.026F2250.

G01Z-5.F3560.
X-88.099F2500.
G02X-81.838Y-81.294I-17.401J29.026F2250.

G01X-129.162F2500.
G03X-133.255Y-86.125I23.662J24.194F2250.

G01X-77.745F2500.
G02X-74.937Y-90.956I-27.755J19.363F2250.

G01X-136.063F2500.
G03X-137.922Y-95.787130.563J14.532F2250.

G01X-73.078F2500.
G02X-72.01Y-100.618I-32.422J9.701F2250.

G01X-138.99F2500.
G03X-139.342Y-105.449I33.49J-4.87F2250.
G01X-71.658F2500.
Y-105.488
G02X-71.999Y-110.28I-33.842J0.F2250.
G01X-139.001F2500.
G03X-137.945Y-115.111I33.501 J4.792F2250.

G01X-73.055F2500.
G02X-74.9Y-119.942I-32.445J9.623F2250.
G01X-136.1F2500.
G03X-133.309Y-124.773I30.6J14.454F2250. G01X-77.691F2500.

G02X-81.758Y-129.604I-27.809J 19.285F2250.

G01X-129.242F2500.
G03X-123.03Y-134.435I23.742J 24.116F2250.

G01X-87.97F2500.
G02X-103.43Y-139.266I-17.53J 28.947F2250.

G01X-107.57F2500.

G01X-136.063F2500.
G03X-137.922Y-95.787130.563J14.532F2250.

G01X-73.078F2500.
G02X-72.01Y-100.618I-32.422J9.701F2250.

G01X-138.99F2500.
G03X-139.342Y-105.449I33.49J-4.87F2250.
G01X-71.658F2500.
Y-105.488
G02X-71.999Y-110.28I-33.842J0.F2250.
G01X-139.001F2500.
G03X-137.945Y-115.111133.501J 4.792F2250.

G01X-73.055F2500.
G02X-74.9Y-119.942I-32.445J9.623F2250.
G01X-136.1F2500.
G03X-133.309Y-124.773I30.6J14.454F2250.
G01X-77.691F2500.
G 02 X - $81.758 \mathrm{Y}-129.604 \mathrm{I}$ -
27.809J19.285F2250.

G01X-129.242F2500.
G03X-123.03Y-134.435I23.742J 24.116F2250.

G01X-87.97F2500.
G02X-103.43Y-139.266I-17.53J 28.947F2250.

G01X-107.57F2500.
G03X-107.57Y-139.266I2.07J33.778F2250. G01Z-21.796F3560.

X-103.43F2500.

G03X-87.97Y-134.435I-2.07J33.778F2250. G01X-123.03F2500.

G02X-129.242Y-129.604I17.53J 28.947F2250.

G01X-81.758F2500.
G03X-77.691Y-124.773I-23.742J 24.116F2250.

G01X-133.309F2500.
G02X-136.1Y-119.942I27.809J19.285F2250. G01X-74.9F2500.

G03X-73.055Y-115.111I-30.6J14.454F2250. G01X-137.945F2500.

G02X-139.001Y-110.28I32.445J9.623F2250. G01X-71.999F2500.

G03X-71.658Y-105.488I-33.501J 4.792F2250.

G01Y-105.449F2500.
X-139.342
G02X-138.99Y-100.618I33.842J-.039F2250.
G01X-72.01F2500.
G03X-73.078Y-95.787I-33.49J-4.87F2250.
G01X-137.922F2500.
G02X-136.063Y-90.956I32.422J9.701F2250.

G01X-74.937F2500.
G03X-77.745Y-86.125I-30.563J14.532F2250.

G01X-133.255F2500.
G02X-129.162Y-81.294I27.755J$19.363 F 2250$.

G01X-81.838F2500.

G03X-88.099Y-76.462I-23.662J24.194F2250.

G01X-122.901F2500.
G03X-122.901Y-76.462117.401J J29.026F2250.

G01Z2.5F2525.
M30
\%

## For Finishing

Select NC sequence - Machining - Finishing Done - Select tool and enter parameters like

Figure 25: Parameters for Finishing


Figure 26: Play Path for Finishing


Cut feed, Step depth, Step over, Profile stock allow, scan type and spindle speed.
Type of Cutter - 8 R0.5 Bull nose cutter Create volume and Select Playpath After completing Playpath, Select NC check

Machining $\rightarrow$ CL data $\rightarrow$ NC sequence $\rightarrow$ sequence $\rightarrow$ file $\rightarrow$ MCD file.

Done. Enter name . ok. Done.

## NC PROGRAM FOR FINISHING PROCESS

\%
G71
00002
(D:Isalpistonhousing\seq0002.ncl.1)
N0010T1M06
S3575M03
G00X-68.866Y-142.971
G43Z2.5H01M08
Z. 75

G01Z0.F1500.
X-68.01
X-68.011Y-141.263
X-68.856Y-142.127
X-69.722Y-142.971
X-68.866
X-68.709Y-143.008
X-68.567Y-143.101
X-68.298Y-143.342
X-68.157Y-143.434
X-68.Y-143.471

| X-67.51 | X-73.418Y-144.248 |
| :---: | :---: |
| X-67.511Y-139.994 | X-73.693Y-144.469 |
| X-68.635Y-141.19 | X-66.625Y-144.472 |
| X-69.796Y-142.349 | X-66.522Y-144.509 |
| X-70.993Y-143.47 | X-66.442Y-144.601 |
| X-68.Y-143.471 | X-66.306Y-144.842 |
| X-67.843Y-143.508 | X-66.226Y-144.935 |
| X-67.701Y-143.601 | X-66.123Y-144.972 |
| X-67.432Y-143.842 | X-66.01 |
| X-67.29Y-143.934 | X-66.013Y-135.875 |
| X-67.133Y-143.972 | X-67.412Y-137.606 |
| X-67.01 | X-68.886Y-139.274 |
| X-67.012Y-138.678 | X-70.434Y-140.874 |
| X-68.263Y-140.073 | X-72.051 Y-142.404 |
| X-69.565Y-141.421 | X-73.734Y-143.861 |
| X-70.916Y-142.721 | X-74.429Y-144.421 |
| X-72.313Y-143.97 | X-75.133Y-144.969 |
| X-67.133Y-143.972 | X-66.123Y-144.972 |
| X-67.03Y-144.009 | X-66.02Y-145.009 |
| X-66.949Y-144.101 | X-65.941Y-145.102 |
| X-66.809Y-144.342 | X-65.805Y-145.342 |
| X-66.728Y-144.435 | X-65.725Y-145.435 |
| X-66.625Y-144.472 | X-65.623Y-145.472 |
| X-66.51 | X-65.51 |
| X-66.512Y-137.307 | X-65.513Y-134.372 |
| X-67.783Y-138.8 | X-66.772Y-136.035 |
| X-69.112Y-140.243 | X-68.1Y-137.643 |
| X-70.495Y-141.634 | X-69.495Y-139.194 |
| X-71.931 Y-142.969 | X-70.953Y-140.684 |

X-72.473Y-142.112
X-74.052Y-143.475
X-75.332Y-144.492
X-76.643Y-145.469
X-65.623Y-145.472
X-65.52Y-145.509
X-65.44Y-145.602
X-65.304Y-145.843
X-65.225Y-145.935
X-65.122Y-145.972
X-65.009
X-65.014Y-132.787
X-66.165Y-134.416
X-67.381Y-135.997
X-68.661Y-137.527
X-70.002Y-139.003
X-71.402Y-140.424
X-72.859Y-141.787
X-74.37Y-143.089
X-75.627Y-144.088
X-76.915Y-145.048
X-78.231 Y-145.968
X-65.122Y-145.972
X-65.02Y-146.009
X-64.94Y-146.102
X-64.804Y-146.343
X-64.725Y-146.435
X-64.622Y-146.472
X-64.509

X-64.514Y-131.105
X-65.576Y-132.725
X-66.701Y-134.3
X-67.889Y-135.83
X-69.137Y-137.311
X-70.443Y-138.741
X-71.805Y-140.118
X-73.22Y-141.439
X-74.688Y-142.703
X-76.376Y-144.029
X-78.118Y-145.285
X-148.94Y-101.898
X-149.044Y-103.46
$X-149.092 Y-105.313$
X-149.089Y-105.488
X-149.092Y-105.491
X-149.072Y-106.811
X-149.014Y-108.069
X-148.988Y-108.444
X-148.919Y-109.332
X-148.896Y-109.606
X-148.757Y-110.878
X-148.684Y-111.401
X-148.55Y-112.34
X-148.297Y-113.774
X-148.036Y-115.008
X-147.97Y-115.307
X-147.647Y-116.612
X-147.208Y-118.166

X-146.727Y-119.651
X-146.219Y-121.045
X-146.153Y-121.22
X-145.585Y-122.619
X-145.549Y-122.698
X-144.948Y-124.035
X-144.896Y-124.147
X-144.166Y-125.617
X-143.36Y-127.095
X-142.493Y-128.548
X-142.384Y-128.716
X-141.595Y-129.926
X-141.409Y-130.195
X-140.528Y-131.435
X-139.447Y-132.835
X-138.364Y-134.124
X-137.598Y-134.97
X-137.151Y-135.459
X-136.964Y-135.654
X-135.798Y-136.829
X-134.452Y-138.077
X-133.083Y-139.242
X-132.53Y-139.677
X-131.624Y-140.383
X-131.406Y-140.542
X-130.056Y-141.505
X-128.482Y-142.53
X-127.034Y-143.385
X-126.756Y-143.543

X-125.327Y-144.306
X-123.485Y-145.197
X-121.743Y-145.94
X-120.047Y-146.579
X-119.149Y-146.877
X-118.223Y-147.181
X-117.325Y-147.435
X-116.356Y-147.706
X-115.482Y-147.911
Z2.5
M30
\%

## Cavity

Select New - Manufacturing - NC Assembly Enter name - Select units - ok

Retrieving the cavity in to manufacturing
Creating Workpiece
Set up the machine tool by selecting type of machine, cutting tool, Machine zero and retract.

Figure 27: Cavity in Manufacturing (NC Assembly) Module



## For Roughing

Select NC sequence - Machining - Volume Done - Select tool and enter parameters like Cut feed, Step depth, Step over, Profile stock allow, rough stock allow, scan type and spindle speed.
Create volume.
Select Playpath
After completing Playpath, Select NC check
Machining $\rightarrow$ CL data $\rightarrow$ NC sequence $\rightarrow$ sequence $\rightarrow$ file $\rightarrow$ MCD file.
Done. Enter name. ok. Done.


Figure 30: NC Check for Roughing


NC PROGRAM
\%
G71
00003
(D:Isalpistonhousinglseq2001.ncl.1)
N0010T1M06
S2500M03
G00X-2.893Y-2.866
G43Z0.H01
G01Z-1.F2500.
X-208.107
Y-3.865
X-2.893
Y-4.864
X-208.107
Y-5.863
X-2.893
Y-6.863
X-97.011
G02X-93.032Y-7.862I-8.489J-42.235

This article can be downloaded from http://www.ijmert.net/C urrent-Issue.php

G01X-2.893
Y-8.861
X-90.11
G02X-87.717Y-9.86I-15.39J-40.237
G01X-2.893
Y-10.859
X-85.659
G02X-83.842Y-11.858I-19.841J-38.239
G01X-2.893
Y-12.857
X-82. 209
X-80.723Y-13.856
X-2.893
Y-14.855
X-79.36
X-78.1Y-15.854
X-2.893
Y-16.854
X-76.931
/X-75.842Y-17.853
X-2.893
Y-18.852X-147.142Y-34.636
X-151.598
Y-35.628
X-147.474
X-147.779Y-36.621
$X-151.598$
Y-37.614
X-148.06

X-148.315Y-38.607
X-151.598
Y-39.6
X-148.546
X-148.754Y-40.592
X-151.598
Y-41.585
X-148.937
X-149.097Y-42.578
X-151.598
Y-43.571
X-149.234
X-149.348Y-44.564
X-151.598
Y-45.556
X-149.439
X-149.508Y-46.549
X-151.598
Y-47.542
X-149.554
X-149.578Y-48.535
X-151.598
Y-49.527
X-149.58
X-149.559Y-50.52
X-151.598
Y-51.513
X-149.516
X-149.45Y-52.506

| X-151.598 | Y-67.398 |
| :---: | :---: |
| Y-53.499 | X-145.604 |
| X-149.362 | X-145.136Y-68.391 |
| X-149.251Y-54.491 | X-151.598 |
| X-151.598 | Y-69.383 |
| Y-55.484 | X-144.637 |
| X-149.117 | X-144.106Y-70.376 |
| X-148.96Y-56.477 | X-151.598 |
| X-151.598 | Y-71.369 |
| Y-57.47 | X-143.542 |
| X-148.78 | X-142.943Y-72.362 |
| X-148.576Y-58.463 | X-151.598 |
| X-151.598 | Y-73.355 |
| Y-59.455 | X-142.308 |
| X-148.348 | $\mathrm{X}-141.634 \mathrm{Y}-74.347$ |
| X-148.096Y-60.448 | X-151.598 |
| X-151.598 | Y-75.34 |
| Y-61.441 | X-140.92 |
| X-147.819 | X-140.162Y-76.333 |
| X-147.516Y-62.434 | X-151.598 |
| X-151.598 | Y-77.326 |
| Y-63.427 | X-139.359 |
| X-147.188 | X-138.506Y-78.319 |
| X-146.834Y-64.419 | X-151.598 |
| X-151.598 | Y-79.311 |
| Y-65.412 | X-137.599 |
| X-146.452 | X-136.635Y-80.304 |
| X-146.042Y-66.405 | X-151.598 |
| X-151.598 | Y-81.297 |

X-135.607
X-134.509Y-82.29
X-151.598
Y-83.282
X-133.332
X-132.066Y-84.275
X-151.598
Y-85.268
X-130.698
X-129.21 Y-86.261
X-151.598
Y-87.254
X-127.576
G03X-125.764Y-88.246I22.076J38.156
G01X-151.598
Y-89.239
X-123.718
G03X-121.35Y-90.232I18.218J40.141
G01X-151.598
Y-91.225
X-118.483
G03X-114.661Y-92.218I12.983J42.127
G01X-151.598
Y-93.21
X-59.952
X-151.598
Y-94.203
X-60.773
G02X-63.416Y-95.196I-2.643J3.021

G01X-151.598
X-149.582Y-49.098
G02X-149.582Y-49.098I44.082J0.
G01Z0.
G00X-147.584Y-2.996
Z-139.07
G01Z-140.28
G03X-151.598Y-7.014I.005J-4.019
G01Y-95.196
X-63.416
G03X-59.402Y-91.182I0.J4.014
G01Y-2.866
ZO.
M30
\%

## For Finishing

Select NC sequence - Machining - Finishing Done - Select tool and enter parameters like Cut feed, Step depth, Step over, Profile stock allow, scan type and spindle speed.

Create volume and Select Playpath
Figure 31: Playpath for Finishing



After completing Playpath, Select NC check Machining $\rightarrow$ CL data $\rightarrow$ NC sequence $\rightarrow$ sequence $\rightarrow$ file $\rightarrow$ MCD file.

Done.Enter name. ok. Done.

## NC PROGRAM

\%
G71
00004
(D:|salpistonhousinglseq2002.ncl.1)
N0010T1M06
S3500M03
G00X-194.399Y-17.749
G43Z0.H01
Z-21.546
G01Z-23.046F2500.
Y-18.923
X-193.99Y-17.746
X-193.566Y-16.574
X-194.399
Y-17.749

X-194.436Y-17.906
X-194.528Y-18.047
X-194.769Y-18.316
X-194.862Y-18.458
X-194.899Y-18.615
Y-22.12
X-194.26Y-20.09
X-193.576Y-18.074
X-192.845Y-16.074
X-194.899
Y-18.615
X-194.936Y-18.772
X-195.028Y-18.914
X-195.269Y-19.183
X-195.362Y-19.325
X-195.399Y-19.482
Y-25.751
X-194.689Y-23.172
X-193.905Y-20.615
X-193.048Y-18.082
X-192.119Y-15.574
X-195.399
Y-19.482
X-195.436Y-19.639
X-195.528Y-19.78
X-195.769Y-20.049
X-195.862Y-20.191
X-195.899Y-20.348
X-104.617Y-105.093

| X-104.265Y-105.138 | X-47.671 Y-53.025 |
| :---: | :---: |
| X-103.918Y-105.205 | X-47.864Y-52.73 |
| X-103.236Y-105.392 | X-48.161 Y-52.222 |
| X-102.901Y-105.503 | X-48.314Y-51.903 |
| X-102.572Y-105.637 | X-48.533Y-51.352 |
| X-101.934Y-105.949 | X-48.645Y-51.017 |
| X-101.628Y-106.121 | X-48.734Y-50.678 |
| X-101.324Y-106.32 | X-48.845Y-50.097 |
| Z-35.545 | X-48.89Y-49.745 |
| G00X-107.095Y-105.137 | X-48.913Y-49.392 |
| Z-36.045 | Y-48.804 |
| G01Z-37.045 | X-48.89Y-48.451 |
| X-106.748Y-105.07 | X-48.845Y-48.099 |
| X-106.395Y-105.024 | X-48.734Y-47.518 |
| X-105.676Y-104.967 | X-48.645Y-47.179 |
| X-105.325 | X-48.533Y-46.844 |
| X-104.605Y-105.024 | X-48.314Y-46.293 |
| X-104.252Y-105.07 | X-48.161 Y-45.974 |
| X-103.905Y-105.137 | X-47.989Y-45.668 |
| X-103.407Y-105.271 | X-47.671Y-45.171 |
| Z-35.045 | X-47.458Y-44.886 |
| G00X-45.506Y-54.994 | X-47.229Y-44.616 |
| G01Z-35.545 | X-46.825Y-44.188 |
| X-45.806Y-54.811 | X-46.564Y-43.952 |
| X-46.096Y-54.609 | X-46.286Y-43.731 |
| X-46.564Y-54.244 | X-45.806Y-43.384 |
| X-46.825Y-54.007 | X-45.506Y-43.202 |
| X-47.069Y-53.755 | X-45.357Y-43.125 |
| X-47.458Y-53.31 | Z-35.045 |


| G00X-47.119Y-54.331 | G00X-48.564Y-52.814 |
| :---: | :---: |
| G01Z-36.045 | Z-35.545 |
| X-47.364Y-54.078 | G01Z-36.545 |
| X-47.807Y-53.573 | X-48.736Y-52.508 |
| X-48.02Y-53.289 | X-48.889Y-52.189 |
| X-48.38Y-52.723 | X-49.151Y-51.528 |
| X-48.552Y-52.417 | X-49.263Y-51.193 |
| X-48.705Y-52.098 | X-49.352Y-50.853 |
| X-48.954Y-51.472 | X-49.484Y-50.156 |
| X-49.065Y-51.137 | X-49.53Y-49.804 |
| X-49.154Y-50.797 | X-49.553Y-49.452 |
| X-49.28Y-50.138 | Y-48.744 |
| X-49.325Y-49.785 | X-49.53Y-48.392 |
| X-49.348Y-49.433 | X-49.484Y-48.04 |
| Y-48.763 | X-49.352Y-47.342 |
| X-49.325Y-48.411 | X-49.263Y-47.003 |
| X-49.28Y-48.059 | X-49.151Y-46.668 |
| X-49.154Y-47.399 | X-48.889Y-46.007 |
| X-49.065Y-47.059 | X-48.736Y-45.688 |
| X-48.954Y-46.724 | X-48.564Y-45.382 |
| X-48.705Y-46.098 | X-48.278Y-44.928 |
| X-48.552Y-45.779 | Z-35.545 |
| X-48.38Y-45.473 | G00X-49.419Y-50.872 |
| X-48.02Y-44.907 | Z-36.045 |
| X-47.807Y-44.623 | G01Z-37.045 |
| X-47.578Y-44.353 | X-49.554Y-50.163 |
| X-47.119Y-43.865 | X-49.599Y-49.811 |
| X-47.016Y-43.772 | X-49.622Y-49.458 |
| Z-35.045 | Y-48.738 |

X-49.599Y-48.385
X-49.554Y-48.033
X-49.419Y-47.323
X-49.33Y-46.984
ZO.
M30
\%

## Side Cavity

Select New - Manufacturing - NC Assembly Enter name - Select units - ok

Figure 34: Work Piece for Side Cavity


Figure 35: Playpath for Roughing


Figure 36: NC Check for Roughing


This article can be downloaded from http://www.ijmert.net/C urrent-Issue.php

Create volume and Select Play path
After completing Playpath, Select NC check
Machining $\rightarrow$ CL data $\rightarrow$ NC sequence $\rightarrow$ sequence $\rightarrow$ file $\rightarrow$ MCD file.

Done . Enter name . ok. Done.

## NC PROGRAM

\%
G71
00003
(D:Isalpistonhousinglseq2003.ncl.1)
N0010T1M06
S5000M03
G00X111.616Y-139.396
G43Z0.H01
G01X111.854Y-140.92Z-1.753F200.
X112.545Y-142.3Z-2.34
X113.625Y-143.402Z-2.684
X114.989Y-144.124Z-2.874
X116.508Y-144.395Z-2.94
X116.616Y-144.396
G03X116.616Y-144.396I0.J5.
G02X120.025Y-146.076I0.J-4.3
G01X120.153Y-146.242
G03X123.68Y-146.474I1.865J1.433
X116.616Y-149.396I-7.064J7.078
G02X120.228Y-151.363I0.J-4.3
G01X120.353Y-151.557
G03X123.997Y-152.454I2.298J1.484
X116.616Y-154.396I-7.381J13.058
G02X120.313Y-156.501I0.J-4.3

G01X120.342Y-156.549
G03X124.298Y-157.861I2.734J1.624
X116.616Y-159.396I-7.682J18.465
G02X120.34Y-161.546IO.J-4.3
G01X120.474Y-161.779
G03X124.192Y-163.22I2.755J1.59
X116.616Y-164.396I-7.576J23.824
G02X120.34Y-166.546IO.J-4.3
G01X120.376Y-166.608
55.984Y-107.449

G03X249.995Y-98.248I-78.935J-44.833
G01X248.896Y-97.165Z-10.886
X247.519Y-96.468Z-10.702
X245.996Y-96.224Z-10.363
X244.47Y-96.457Z-9.788
X243.088Y-97.143Z-8.442
X243.001Y-97.206Z-7.945
Z-1.945
G00X237.162Y-205.787
Z-4.945
G01Z-7.945
X238.092Y-207.018Z-9.734
X239.353Y-207.907Z-10.332
X240.825Y-208.37Z-10.684
X242.368Y-208.361Z-10.877
X243.835Y-207.883Z-10.945
X243.931Y-207.833
G03X249.297Y-204.421I-20.16J37.632
G01X251.861Y-202.359

| X252.422Y-201.866 | X258.546Y-195.2 |
| :---: | :---: |
| G03X266.136Y-139.266I-135.326J62.448 | G02X261.59Y-192.80418.912J-8.187 |
| G01X266.108Y-136.141 | G03X266.814Y-175.5651-138.893J51.501 |
| X265.993Y-133.019 | G01X267.464Y-170.904 |
| X265.698Y-131.775 | X267.677Y-169.138 |
| X264.848Y-128.564 | X268.148Y-164.223 |
| X263.904Y-125.38 | X268.408Y-158.971 |
| X262.586Y-121.544 | X268.437Y-157.969 |
| X260.806Y-117.109 | X268.434Y-153.158 |
| X260.008Y-115.301 | X268.398Y-151.88 |
| X258.674Y-112.57 | X268.152Y-147.299 |
| X257.792Y-111.305Z-10.886 | X267.845Y-144.275 |
| X256.565Y-110.369Z-10.702 | X267.496Y-141.256 |
| X255.111Y-109.851Z-10.363 | X266.701Y-136.339 |
| X253.569Y-109.801Z-9.788 | X266.053Y-133.487 |
| X252.085Y-110.224Z-8.442 | X265.483Y-132.054Z-10.886 |
| X251.988Y-110.271Z-7.945 | X264.502Y-130.862Z-10.702 |
| Z-1.945 | X263.206Y-130.026Z-10.363 |
| G00X245.482Y-201.346 | X261.716Y-129.625Z-9.788 |
| Z-4.945 | X260.174Y-129.698Z-8.442 |
| G01Z-7.945 | X260.069Y-129.72Z-7.945 |
| X246.681Y-202.316Z-9.734 | Z-1.945 |
| X248.119Y-202.875Z-10.332 | G00X254.792Y-190.855 |
| X249.659Y-202.969Z-10.684 | Z-4.945 |
| X251.155Y-202.589Z-10.877 | G01Z-7.945 |
| X252.463Y-201.771Z-10.945 | X255.74Y-192.073Z-9.734 |
| X252.544Y-201.699 | X257.014Y-192.944Z-10.332 |
| X254.009Y-200.373 | X258.492Y-193.385Z-10.684 |
| X256.309Y-197.915 | X260.035Y-193.354Z-10.877 |


| X261.495Y-192.855Z-10.945 | X126.948Y-211.42Z-7.945 |
| :---: | :---: |
| X261.59Y-192.804 | Z-1.945 |
| G02X266.363Y-191.335I5.868J-10.583 | G00X60.026Y-186.089 |
| X265.523Y-181.146I10.654J6.008 | Z-4.945 |
| G01X266.28Y-178.252 | Z-97.231 |
| X266.525Y-176.911 | G00X182.212Y-118.939 |
| X266.565Y-175.369Z-10.886 | Z-100.231 |
| X266.133Y-173.888Z-10.702 | G01Z-103.231 |
| X265.269Y-172.609Z-10.363 | X183.738Y-119.166Z-105.02 |
| X264.057Y-171.654Z-9.788 | X185.261Y-118.916Z-105.619 |
| X262.612Y-171.115Z-8.442 | X186.635Y-118.214Z-105.97 |
| X262.505Y-171.094Z-7.945 | X187.73Y-117.127Z-106.164 |
| Z-1.945 | X188.441Y-115.758Z-106.231 |
| G00X124.95Y-211.859 | X188.475Y-115.655 |
| Z-4.945 | X188.595Y-115.269 |
| G01Z-7.945 | X188.293Y-115.188 |
| X123.903Y-212.993Z-9.734 | X186.759Y-115.024Z-106.172 |
| X123.251Y-214.392Z-10.332 | X185.247Y-115.335Z-105.988 |
| X123.057Y-215.922Z-10.684 | X183.903Y-116.092Z-105.65 |
| X123.339Y-217.439Z-10.877 | X182.853Y-117.223Z-105.075 |
| X124.071Y-218.798Z-10.945 | X182.198Y-118.62Z-103.728 |
| X124.137Y-218.884 | X182.169Y-118.724Z-103.231 |
| G02X125.715Y-221.504I-9.378J-7.432 | Z-97.231 |
| X127.571Y-218.463I11.06J-4.667 | G00X182.354Y-123.787 |
| G01X128.368Y-217.142Z-10.886 | Z-100.231 |
| X128.723Y-215.64Z-10.702 | G01Z-103.231 |
| X128.604Y-214.102Z-10.363 | X180.837Y-124.064Z-105.02 |
| X128.021Y-212.673Z-9.788 | X179.475Y-124.791Z-105.619 |
| X127.03Y-211.49Z-8.442 | X178.4Y-125.898Z-105.97 |


| X177.714Y-127.28Z-106.164 | X183.784Y-124.771Z-106.231 |
| :---: | :---: |
| X177.482Y-128.805Z-106.231 | Z-100.231 |
| X177.484Y-128.913 | G00X184.931Y-119.245 |
| X177.517Y-130.222 | Z-103.231 |
| X183.091Y-131.716 | G01Z-106.231 |
| X184.628Y-127.347 | X183.388Y-119.285Z-108.02 |
| X184.909Y-125.83Z-106.172 | X181.931Y-119.793Z-108.619 |
| X184.715Y-124.299Z-105.988 | X180.699Y-120.722Z-108.97 |
| X184.063Y-122.901Z-105.65 | X179.808Y-121.982Z-109.164 |
| X183.016Y-121.768Z-105.075 | X179.344Y-123.453Z-109.231 |
| X181.673Y-121.008Z-103.728 | X179.329Y-123.56 |
| X181.571Y-120.971Z-103.231 | X179.039Y-125.8 |
| Z-97.231 | X178.786Y-128.044 |
| G00X183.232Y-115.216 | X180.786Y-128.6 |
| Z-103.231 | X181.549Y-128.548 |
| G01Z-106.231 | X182.275Y-128.421 |
| X181.883Y-115.965Z-108.36 | G03X186.999Y-116.225I-187.862J79.783 |
| X180.827Y-117.089Z-108.969 | G01X184.099Y-115.47 |
| X180.163Y-118.482Z-109.212 | X182.564Y-115.316Z-108.933 |
| X180.028Y-119.06Z-109.231 | X181.055Y-115.638Z-107.717 |
| X179.329Y-123.56 | X180.627Y-115.824Z-106.231 |
| G03X185.133Y-119.504I.88J4.922 | Z-100.231 |
| X184.101Y-115.466I-5.045J. 861 | G00X178.862Y-127.332 |
| G01X180.878Y-114.585 | Z-103.231 |
| X180.028Y-119.06 | G01Z-106.231 |
| X180.004Y-120.602Z-109.167 | X180.102Y-128.25Z-108.989 |
| X180.451Y-122.079Z-108.965 | X181.032Y-128.624Z-109.231 |
| X181.327Y-123.349Z-108.591 | X182.062Y-128.922 |
| X182.548Y-124.292Z-107.934 | X182.274Y-128.424 |

X182.653Y-126.928Z-109.172
X182.557Y-125.388Z-108.988
X181.997Y-123.951Z-108.65
X181.025Y-122.752Z-108.075
X179.734Y-121.907Z-106.728
X179.635Y-121.864Z-106.231
ZO.
M30
\%

## For Finishing

Select NC sequence - Machining - Finishing Done - Select tool and enter parameters like Cut feed, Step depth, Step over, Profile stock allow, scan type and spindle speed.
Create volume.
Select Playpath
After completing Playpath, Select NC check
Machining $\rightarrow$ CL data $\rightarrow$ NC sequence $\rightarrow$ sequence $\rightarrow$ file $\rightarrow$ MCD file.

Done. Enter name . ok. Done.


## RESULTS

Die Design Calculations

## Tonnage Calculation

Projected area of one component (a) = $36252.7 \mathrm{~mm}^{2}$

Number of cavities( n ) $=1$
Projected area of Casting $(A)=a \times n$

$$
\begin{aligned}
& =1494.77 \times 1 \\
& =36252.7 \mathrm{~mm}^{2}
\end{aligned}
$$

## Area of Slide

Projected Area of Slide $1=55987 \mathrm{~mm}^{2}$
Projected Area of Slide $2=84078 \mathrm{~mm}^{2}$
Projected area including overflows and feed system

$$
\begin{aligned}
& (A F)=A \times c / 100 \\
& =36252.7 \times 40 / 100 \\
& =14501 \mathrm{~mm}^{2} \\
& \text { Total Projected area }=A+A 1+A 2+A F \\
& =36252.7+55987+84078+14501 \\
& =190818.7 \mathrm{~mm}^{2}
\end{aligned}
$$

Specific Injection pressure $=800 \mathrm{kgf} / \mathrm{cm}^{2}$

$$
=800 \times 10^{-2} \mathrm{kgf} / \mathrm{mm}^{2}
$$

Total force acting on the die plate $(\mathrm{F})=$ Projected area $\times$ Injection Pressure

$$
\begin{aligned}
& =190818.7 \times 8 \mathrm{kgf} \\
& =1526549.6 \mathrm{~kg} \\
& =1526.5496 \mathrm{tons}
\end{aligned}
$$

Considering machine efficiency of $80 \%$,
Locking tonnage required $=\mathrm{F} \times 1.2$

$$
=1526.5496 \times 1.2
$$

$$
=1831.85 \mathrm{~T}
$$

Hence according to locking tonnage we can select 2500T

## Shot Weight Calculation

One component volume (v) $=31675.68 \mathrm{~mm}^{3}$
Total component volume ( V ) $=\mathrm{vxn}$

$$
\begin{aligned}
& =31675.68 \times 1 \\
& =31675.68 \mathrm{~mm}^{3}
\end{aligned}
$$

Volume of component + Volume of overflow and feed system

$$
\begin{aligned}
& (\mathrm{Vt})=\mathrm{V} \times(1+\mathrm{c} / 100) \\
& =31675.68 \times(1+40 / 100) \\
& =79000 \mathrm{~mm}^{3} \\
& =79000 \times 2.6 \mathrm{e}^{-6} \\
& =205 \mathrm{gms} \\
& =0.205 \mathrm{kgs}
\end{aligned}
$$

## Plunger Diameter Calculation

Actual shot volume $=\mathrm{Vt}+\pi \mathrm{d}^{2} \mathrm{~h} / 4$
Where h is biscuit thickness and
$d$ is the plunger diameter
$\mathrm{h}=$ biscuit thickness $=4 \mathrm{~mm}$
No. of biscuits $=6$
Total thickness $=24 \mathrm{~mm}$
Stroke length for 2500T machine $(\mathrm{I})=220 \mathrm{~mm}$
Effective stroke length $(\mathrm{L})=\mathrm{I}-\mathrm{h}$
$=220-4$
$=216 \mathrm{~mm}$
Assume fill ratio $=f=0.5$
Volume delivered by machine $=\pi \mathrm{d}^{2} \times(L / 4) \times f$
(i.e.) $V t+\pi d^{2} h / 4=\pi d^{2} x(L / 4) \times f$

$$
\begin{aligned}
& V \mathrm{t}=\pi \mathrm{d}^{2} \times(\mathrm{L} / 4) \times \mathrm{f}-\pi \mathrm{d}^{2} \mathrm{~h} / 4 \\
& \mathrm{Vt}=\left(\pi \mathrm{d}^{2} / 4\right)(\mathrm{Lf}-\mathrm{h}) \\
& 79000=\left(\pi \mathrm{d}^{2} / 4\right)(216 \times 0.5-4) \\
& 5346.5778=\mathrm{d}^{2} \\
& \mathrm{~d}=31.67 \mathrm{~mm}
\end{aligned}
$$

## Fill Ratio Calculation

Fill ratio = Metal volume/shot sleeve volume

$$
\begin{aligned}
& =\mathrm{Vt}+\pi \mathrm{d}^{2} \times(\mathrm{h} / 4) / \pi \mathrm{d}^{2} \mathrm{x}(\mathrm{~L} / 4) \\
& =79000+3038.5 / 3038.5^{*} 26
\end{aligned}
$$

Fill ratio $=1.038$
We have to reduce $3 \%$ of plunger dia $=31.67-$
$0.95=30.72 \mathrm{~mm}$

$$
=30 \mathrm{~mm}
$$

## Fill Time Calculation

Fill Time $=k\left[T_{i}-T_{f}+S_{z}\right] T /\left[T_{f}-T_{d}\right]$
where
$k$, empirical derived constant $=0.0346$
$\mathrm{T}_{\mathrm{i}}$, Temperature as it enters in to the die $=640$ ${ }^{\circ} \mathrm{C}$
$T_{f}$, Minimum flow temperature of metal $=580$ ${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{d}}$, Tempearture of die cavity surface just before the metal enters $=200^{\circ} \mathrm{C}$

S, percent solid fraction allowable in the metal at the end of filling $=30 \%$
Z, Units conversion factor $=4.8$
T, Casting thickness $=8.701 \mathrm{~mm}$
Fill Time $=k\left[T_{i}-T_{f}+S_{z}\right] T /\left[T_{f}-T_{d}\right]$
Fill Time $=0.0346[640-580+30 * 4.8] 8.7 /$
[580-200]
$=74.736 / 320$
= 161 millisecs

## CONCLUSI ON

In our project we have modeled a piston housing used in a hydraulic oil filter pump in 3D modeling software Pro/Engineer. We have designed total cavity die for the piston housing. We have done die design calculations for piston housing. From the calculations, we have to select 2500T machine.

We have extracted core, cavity, prepared total die for the piston housing. We have done CNC programming for core, cavity and side cavity. We have prepared the total casting tool die of piston housing which is ready for manufacturing.

## BIBLI OGRAPHY

1. Groover (2006), CAD/CAM: ComputerAided Design and Manufacturing, Pearson Education, India
2. Ibrahim Zeid (2010), CAD/CAM Theory
\& Practice 2E, Tata McGraw-Hill Education
3. Mikell P Groover (1986), Industrial Robotics, McGraw-Hill
4. Gupta A K and S K Arora (2013), Industrial Automation and Robotics, Third Edition, Laxmi Publications
5. Miltiadis A Boboulos (2010), Automation and Robotics, Book Boon
6. Nand K Jha (1991), Handbook of Flexible Manufacturing Systems, Academic Press Inc
7. Nageswara Rao P (2004), CAD/CAM Principles and Applications (2nd Edition), McGrawHill.


## International Journal of Mechanical Engineering Research and Technology \#301, Balaji Heights Apts, Balaji Hills, Uppal, Hyderabad, India. <br> Phone: +91-09441351700 (or) +91-09059645577 <br> Email: info.ijmert@gmail.com (or) editor@ijmert.net Website: www.ijmert.net




[^0]:    1 PG Student, AVR \& SVR Engineering College, Nannur (V), Orvakal (M), Kurnool(D), A.P., India.
    ${ }^{2}$ Assistant Professor, AVR \& SVR Engineering College, Nannur (V), Orvakal (M), Kurnool(D), A.P., India.
    ${ }^{3}$ Associate Professor \& HOD, AVR \& SVR Engineering College, Nannur (V), Orvakal (M), Kurnool(D), A.P., India.
    4 Principal, AVR \& SVR Engineering College, Nannur (V), Orvakal (M), Kurnool(D), A.P., India.

