

Email ID: info.ijmert@gmail.com or editor@ijmert.net

ISSN 2454 – 535X www.ijmert.com Vol. 1, No. 2, November 2015 © 2015 IJMERT. All Rights Reserved

Research Paper

DESIGNING CASTING TOOL FOR PISTON HOUSING

M Sathish Reddy1*, M Ayyanna2, P Hussain3 and S Sudhakar Babu4

*Corresponding Author: **M Sathish Reddy**, ⊠ reach2me1111@gmail.com

An Oil filter is a filter to remove contaminants from engine oil, transmission oil, lubricating oil, or hydraulic oil. Oil filters are used in many different types of hydraulic machinery. A chief use of the oil filter is in internal-combustion engines in on- and off-road motor vehicles, light aircraft, and various naval vessels. Other vehicle hydraulic systems, such as those in automatic transmissions and power steering, are often equipped with an oil filter. Gas turbine engines, such as those on jet aircraft, require the use of oil filters. And oil production, transport, and recycling facilities employ filters. Parts of the hydraulic oil filter in our project are piston housing, shaft housing, top plate, crankshaft, and piston. The aim of the project is to model and design casting tool for piston housing which is used in a hydraulic oil filter pump having pressure 50 kg/cm², and temperature rating 300 deg C. In casting tool, we are designing core cavity, mould base plates. Calculations are to be done for cavity fill time, cavity fill rate, gate area, runner area, shot weight, die cooling calculations. CNC programming for core and cavity is to be done and for remaining manufacturing processes are to be done.

Keywords: Oil filter pump, Casting tool, Piston housing, 3D parametric software Pro/Engineer, CNC program

INTRODUCTION

Hydraulic machines are machinery and tools that use liquid fluid power to do simple work. Heavy equipment is a common example. In this type of machine, hydraulic fluid is transmitted throughout the machine to various hydraulic motors and hydraulic cylinders and which becomes pressurised according to the resistance present. The fluid is controlled

directly or automatically by control valves and distributed through hoses and tubes. The popularity of hydraulic machinery is due to the very large amount of power that can be transferred through small tubes and flexible hoses, and the high power density and wide array of actuators that can make use of this power. Hydraulic machinery is operated by the use of hydraulics, where a liquid is the powering medium.

¹ PG Student, AVR & SVR Engineering College, Nannur (V), Orvakal (M), Kurnool(D), A.P., India.

Assistant Professor, AVR & SVR Engineering College, Nannur (V), Orvakal (M), Kurnool(D), A.P., India.

³ Associate Professor & HOD, AVR & SVR Engineering College, Nannur (V), Orvakal (M), Kurnool(D), A.P., India.

⁴ Principal, AVR & SVR Engineering College, Nannur (V), Orvakal (M), Kurnool(D), A.P., India.

An oil filter is a filter designed to remove contaminants from engine oil, transmission oil, lubricating oil, or hydraulic oil. Oil filters are used in many different types of hydraulic machinery. A chief use of the oil filter is in internal-combustion engines in on- and offroad motor vehicles, light aircraft, and various naval vessels.

Hydraulic Pump

Hydraulic pumps supply fluid to the components in the system. Pressure in the system develops in reaction to the load. Hence, a pump rated for 5,000 psi is capable of maintaining flow against a load of 5,000 psi. Pumps have a power density about ten times greater than an electric motor (by volume). They are powered by an electric motor or an engine, connected through gears, belts, or a flexible elastomeric coupling to reduce vibration.

Casting

Casting is one of the oldest procedures done on metals. Many products are formed using this method. Here is an attempt to share the knowledge of casting.

Cast Metals

The main die casting alloys are: zinc, aluminium, magnesium, copper, lead, and tin; although uncommon, ferrous die casting is possible. Specific dies casting alloys include: ZAMAK; zinc aluminium; aluminium to, e.g. The Aluminum Association (AA) standards: AA 380, AA 384, AA 386, AA 390; and AZ91D magnesium.

The minimum section thickness and minimum draft required for a casting as outlined in the table below.

Table 1				
S. No.	Metal	Minimum Section	Minimum Draft	
1	Aluminium alloys	0.89 mm (0.035 in)	1:100 (0.6°)	
2	Brass and bronze	1.27 mm (0.050 in)	1:80 (0.7°)	
3	Magnesium alloys	1.27 mm (0.050 in)	1:100 (0.6°)	
4	Zinc alloys	0.63 mm (0.025 in)	1:200 (0.3°)	

Equipment

There are two basic types of die casting machines: hot-chamber machines and cold-chamber machines. These are rated by how much clamping force they can apply. Typical ratings are between 400 and 4,000st (2,500 and 25,000 kg).

Hot-Chamber Machines

Hot-chamber machines, also known as gooseneck machines, rely upon a pool of molten metal to feed the die. At the beginning of the cycle the piston of the machine is

retracted, which allows the molten metal to fill the "gooseneck". The pneumatic or hydraulic powered piston then forces this metal out of the gooseneck into the die. The advantages of this system include fast cycle times (approximately 15 cycles a minute) and the convenience of melting the metal in the casting machine. The disadvantages of this system are that high-melting point metals cannot be utilized and aluminium cannot be used because it picks up some of the iron while in the molten pool. Due to this, hot-chamber machines are primarily used with zinc, tin, and lead based alloys.

Cold-Chamber Machines

Cold-chamber machines are used when the casting alloy cannot be used in hot-chamber machines; these include aluminium, zinc alloys with a large composition of aluminium, magnesium and copper. The process for these machines start with melting the metal in a separate furnace. Then a precise amount of molten metal is transported to the cold-

Figure 2: A Schematic of a Cold-Chamber Die Casting Machine

LOWER PLATEN

TRANSFER. TUBE

MOLTEN METAL

POWER CYLINDER

HOLDING FURNACE

chamber machine where it is fed into an unheated shot chamber (or injection cylinder). This shot is then driven into the die by a hydraulic or mechanical piston. This biggest disadvantage of this system is the slower cycle time due to the need to transfer the molten metal from the furnace to the cold-chamber machine.

Dies

Two dies are used in die casting; one is called the "cover die half" and the other the "ejector die half". Where they meet is called the parting line. The cover die contains the sprue (for hotchamber machines) or shot hole (for coldchamber machines), which allows the molten metal to flow into the dies; this feature matches up with the injector nozzle on the hot-chamber machines or the shot chamber in the coldchamber machines. The ejector die contains the ejector pins and usually the runner, which is the path from the sprue or shot hole to the mold cavity. The cover die is secured to the stationary, or front, platen of the casting machine, while the ejector die is attached to the movable platen. The mold cavity is cut into two cavity inserts, which are separate pieces

that can be replaced relatively easily and bolt into the die halves.

The dies are designed so that the finished casting will slide off the cover half of the die and stay in the ejector half as the dies are opened. This assures that the casting will be ejected every cycle because the ejector half contains the ejector pins to push the casting out of that die half. The ejector pins are driven by an ejector pin plate, which accurately drives all of the pins at the same time and with the same force, so that the casting is not damaged. The ejector pin plate also retracts the pins after ejecting the casting to prepare for the next shot. There must be enough ejector pins to keep the overall force on each pin low, because the casting is still hot and can be damaged by excessive force. The pins still leave a mark, so they must be located in places where these marks will not hamper the castings purpose.

The most important material properties for the dies are thermal shock resistance and softening at elevated temperature; other important properties include hardenability, machinability, heat checking resistance, weldability, availability (especially for larger dies), and cost. The longevity of a die is directly dependent on the temperature of the molten metal and the cycle time. The dies used in die casting are usually made out of hardened tool steels, because cast iron cannot withstand the high pressures involved, therefore the dies are very expensive, resulting in high start-up costs. Metals that are cast at higher temperatures require dies made from higher alloy steels.

The main failure mode for die casting dies is wear or erosion. Other failure modes are heat checking and thermal fatigue. Heat checking is when surface cracks occur on the die due to a large temperature change on every cycle. Thermal fatigue is when surface cracks occur on the die due to a large number of cycles.

MODELING AND CORE, CAVITY EXTRACTION IN PRO/ENGINEER

Modeling

2-D Model with dimensions

3-D Modeling of the model

Core and Cavity Extraction

Select New - Manufacturing - Mold Cavity enter name - Change units - ok.

Assemble the piston housing in to the manufacturing.

Splitting the Volume in to Core and Cavity

Cavity 1

Cavity 2

Side Cavity

Die Components

Back Plate for Cavity

Table 2: Die and Component Material and Hardness for Various Cast Metals								
	Cast Metal							
S. Die No Component		Tin, Lead & Zinc		Aluminium & Magnesium		Copper & Brass		
		Materia	I	Hardness	Material	Hardness	Material	Hardness
		<u>P20</u>		290-330 HB	H13	42–48 HRC	DIN 1.2367	38-44
		H11		46-50	1113	<u>42-40 HKO</u>	DIN 1.2307	HRC
	Cavity	<u> </u>		HRC	H11	42 40 HDC	H20,H21,	44-48
1	inserts	H13		46-50	1111	42–48 HRC	H22	HRC
	11136113	1113		HRC				40-46
		H13		46-52	H13	44-48 HRC	DIN 1.2367	HRC
		1113		HRC				пкс
2	Cores				DIN 1.2367	42-48		
	Cores			DIN 1.2301	HRC			
3	Core Pins	H13	48	3-52 HRC	DIN 1.2367	37-40	DIN 1.2367	37-40
	001011113	1113 40 3		9 02 1110	<u>Prehard</u>	HRC	<u>Prehard</u>	HRC
				H13	46-48	DIN 1.2367		
4	Sprue Parts	H13	48-52 HRC		HRC		42-46	
	Sp. 40 . 4. to			DIN 1.2367	44-46		HRC	
				<u>DIIV 1.2007</u>	HRC			
	5 Nozzle 420					DIN 1.2367	40-44	
5		Nozzle 420	48	48-52 HRC	H13	42-48 HRC		HRC
1102210							H13	42-48
								HRC
6	Ejector Pins	H13	48	3-52 HRC	H13	46-50	H13	46-50
	, ,				_	HRC	_	HRC
7 Plunger Shot Sleeve				H13	42-48	DIN 1.2367	42-46	
		t H13 4	48	18-52 HRC		HRC		HRC
	Sleeve				DIN 1.2367	42-48	H13	42-46
		44.40				HRC		HRC
8	Holder Block	4140	~	-300 HB	4140	~300 HB	4140	~300 HB
		Prehard GGG 112		Prehard 300 11B		Prehard 300 HB		

Table 3: Typical Die Temperatures and Life for Various Cast Materials					
	Zinc	Aluminium	Magnesium	Brass (Leaded Yellow)	
Maximum die life [number of cycles]	1,000,000	100,000	100,000	10,000	
Die temperature [C° (F°)]	218 (425)	288 (550)	260 (500)	500 (950)	
Casting temperature [C° (F°)]	400 (760)	660 (1220)	760 (1400)	1090 (2000)	

Figure 5: 2-D Drawing of the Model

Figure 8: Assembling the Model into Manufacturing (Mold Cavity) Module Create a Work Piece and Parting Surface

Figure 6: 3-D Model

Figure 9: Work Piece and Parting Surface

Figure 7: 3-D Model

Figure 10: Cavity 1

Figure 11: Cavity 2

Figure 1

Figure 14: Angular Pins

Figure 15: Angular Pi

Figure 17: Total Assembly of Die

Figure 18: Exploded View

Figure 19: Core in Manufacturing (NC Assembly) Module Creating Workpiece

Figure 20: Work Piece for Core

Figure 21: Cutting Tool

Figure 22: Parameters for Roughing

Figure 23: Play Path for Roughing

Figure 24: NC Check for Roughing

Angular Pins

Spacer Housing

Plate

Total Assembly

Total assembly of die

Exploded View

Manufacturing Process

Core

Select New - Manufacturing - NC Assembly -

Enter name - Select units - ok

Retrieving the core in to manufacturing

Set up the machine tool by selecting type of machine, cutting tool, Machine zero and retract.

For Roughing

Select NC sequence - Machining - Volume - Done - Select tool and enter parameters like Cut feed, Step depth, Step over, Profile stock allow, rough stock allow, scan type and spindle speed.

Create volume.

Select Playpath

After completing Playpath, Select NC check

Machining \rightarrow CL data \rightarrow NC sequence \rightarrow sequence \rightarrow file \rightarrow MCD file.

Done . Enter name . ok . Done.

NC PROGRAM FOR ROUGHING PROCESS

%

G71

O0001

(D:\sa\pistonhousing\seq0001.ncl.1)

N0010T1M06

S2500M03

G01G43X-88.099Y-76.462Z2.5F2350.H01

Z1.

Z-1.F3560.

X-122.901F2500.

G03X-129.162Y-81.294I17.401J-29.026F2250.

G01X-81.838F2500.

G02X-77.745Y-86.125I-23.662J-24.194F2250.

G01X-133.255F2500.	G02X-107.57Y-139.266I-2.07J33.778
G03X-136.063Y-90.956I27.755J-	G01Z-2.F3560.
19.363F2250.	X-103.43F2500.
G01X-74.937F2500.	G03X-87.97Y-134.435I-2.07J33.778F2250.
G02X-73.078Y-95.787I-30.563J- 14.532F2250.	G01X-123.03F2500.
G01X-137.922F2500.	G02X-129.242Y-129.604I17.53J 28.947F2250.
G03X-138.99Y-100.618I32.422J-9.701 F2250.	G01X-81.758F2500.
G01X-72.01F2500.	G03X-77.691Y-124.773I-23.742J 24.116F2250.
G02X-71.658Y-105.449I-33.49J-4.87F2250.	G01X-133.309F2500.
G01X-139.342F2500.	G02X-136.1Y-119.942I27.809J19.285F2250.
Y-105.488	G01X-74.9F2500.
G03X-139.001Y-110.28I33.842J0.F2250.	
G01X-71.999F2500.	G03X-73.055Y-115.111I-30.6J14.454F2250.
G02X-73.055Y-115.111I-33.501J4.792	G01X-137.945F2500.
F2250.	G02X-139.001Y-110.28l32.445J9.623F2250.
G01X-137.945F2500.	G01X-71.999F2500.
G03X-136.1Y-119.942l32.445J9.623F2250. G01X-74.9F2500.	G03X-71.658Y-105.488I-33.501J 4.792F2250.
G02X-77.691Y-124.773I-30.6J14.454F2250.	G01Y-105.449F2500.
G01X-133.309F2500.	X-139.342
G03X-129.242Y-129.604I27.809J	G02X-138.99Y-100.618I33.842J039F2250.
19.285F2250.	G01X-72.01F2500.
G01X-81.758F2500.	G03X-73.078Y-95.787I-33.49J-4.87F2250.
G02X-87.97Y-134.435I-23.742J24.	G01X-137.922F2500.
116F2250.	G02X-136.063Y-90.956I32.422J-
G01X-123.03F2500.	9.701F2250.
G03X-107.57Y-139.266l17.53J28.947F2250.	G01X-74.937F2500.
G01X-103.43F2500.	G03X-77.745Y-86.125I-30.563J-
000)/ 400 40)/ 400 000 0 0= 100 ========	4.4.50050050

14.532F2250.

G03X-103.43Y-139.266I-2.07J33.778F2250.

G01X-133.255F2500.	G03X-137.945Y-115.111133.501J 4.792F2250.
G02X-129.162Y-81.294I27.755J- 19.363F2250.	G01X-73.055F2500.
G01X-81.838F2500.	G02X-74.9Y-119.942I-32.445J9.623F2250.
G03X-88.099Y-76.462I-23.662J-	G01X-136.1F2500.
24.194F2250.	G03X-133.309Y-124.773I30.6J14.454F2250.
G01X-122.901F2500.	G01X-77.691F2500.
G03X-122.901Y-76.462I17.401J- 29.026F2250.	G02X-81.758Y-129.604I-27.809J 19.285F2250.
G01Z-3.F3560.	G01X-129.242F2500.
X-88.099F2500. G02X-81.838Y-81.294I-17.401J-	G 0 3 X - 1 2 3 . 0 3 Y - 1 3 4 . 4 3 5 I 2 3 . 7 4 2 J 24 . 116 F 2 2 5 0 .
29.026F2250.	G01X-87.97F2500.
G01X-129.162F2500.	G02X-103.43Y-139.266I-17.53J
G03X-133.255Y-86.125I23.662J-	28.947F2250.
24.194F2250.	G01X-107.57F2500.
G01X-77.745F2500.	G03X-107.57Y-139.266I2.07J33.778F2250.
G02X-74.937Y-90.956I-27.755J-	G01Z-4.F3560.
19.363F2250.	X-103.43F2500.
G01X-136.063F2500.	G03X-87.97Y-134.435I-2.07J33.778F2250.
G03X-137.922Y-95.787I30.563J- 14.532F2250.	G01X-123.03F2500.
G01X-73.078F2500.	G02X-129.242Y-129.604I17.53J 28.947F2250.
G02X-72.01Y-100.618I-32.422J-	G01X-81.758F2500.
9.701F2250. G01X-138.99F2500.	G03X-77.691Y-124.773I-23.742J 24.116F2250.
G03X-139.342Y-105.449I33.49J-4.87F2250.	G01X-133.309F2500.
G01X-71.658F2500.	G02X-136.1Y-119.942I27.809J19.285F2250.
Y-105.488	G01X-74.9F2500.
G02X-71.999Y-110.28I-33.842J0.F2250.	G03X-73.055Y-115.111I-30.6J14.454F2250.
G01X-139.001F2500.	G01X-137.945F2500.

G02X-139.001Y-110.28I32.445J9.623F2250. G01X-77.745F2500. G01X-71.999F2500. G02X-74.937Y-90.956I-27.755J-19.363F2250. G03X-71.658Y-105.488I-33.501J 4.792F2250. G01X-136.063F2500. G01Y-105.449F2500. G03X-137.922Y-95.787I30.563J-14.532F2250. X-139.342 G01X-73.078F2500. G02X-138.99Y-100.618I33.842J-.039F2250. G02X-72.01Y-100.618I-32.422J-G01X-72.01F2500. 9.701F2250. G03X-73.078Y-95.787I-33.49J-4.87F2250. G01X-138.99F2500. G01X-137.922F2500. G03X-139.342Y-105.449I33.49J-4.87F2250. G02X-136.063Y-90.956I32.422J-G01X-71.658F2500. 9.701F2250. Y-105.488 G01X-74.937F2500. G02X-71.999Y-110.28I-33.842J0.F2250. G03X-77.745Y-86.125I-30.563J-14.532F2250. G01X-139.001F2500. G03X-137.945Y-115.111133.501 G01X-133.255F2500. J4.792F2250. G02X-129.162Y-81.294I27.755J-19.363F2250. G01X-73.055F2500. G01X-81.838F2500. G02X-74.9Y-119.942I-32.445J9.623F2250. G03X-88.099Y-76.462I-23.662J-G01X-136.1F2500. 24.194F2250. G03X-133.309Y-124.773I30.6J14.454F2250. G01X-122.901F2500. G01X-77.691F2500. G03X-122.901Y-76.462I17.401J-G02X-81.758Y-129.604I-27.809J 29.026F2250. 19.285F2250. G01Z-5.F3560. G01X-129.242F2500. X-88.099F2500. G03X-123.03Y-134.435I23.742J 24.116F2250. G02X-81.838Y-81.294I-17.401J-

29.026F2250.

G01X-129.162F2500.

G03X-133.255Y-86.125I23.662J-

G01X-87.97F2500.

28.947F2250.

G02X-103.43Y-139.266I-17.53J

G01X-136.063F2500.	G03X-87.97Y-134.435I-2.07J33.778F2250.
G03X-137.922Y-95.787I30.563J-	G01X-123.03F2500.
14.532F2250.	G02X-129.242Y-129.604I17.53J
G01X-73.078F2500.	28.947F2250.
G02X-72.01Y-100.618I-32.422J-	G01X-81.758F2500.
9.701F2250.	G03X-77.691Y-124.773I-23.742J
G01X-138.99F2500.	24.116F2250.
G03X-139.342Y-105.449I33.49J-4.87F2250.	G01X-133.309F2500.
G01X-71.658F2500.	G02X-136.1Y-119.942I27.809J19.285F2250.
Y-105.488	G01X-74.9F2500.
G02X-71.999Y-110.28I-33.842J0.F2250.	G03X-73.055Y-115.111I-30.6J14.454F2250.
G01X-139.001F2500.	G01X-137.945F2500.
G03X-137.945Y-115.111I33.501J	G02X-139.001Y-110.28I32.445J9.623F2250.
4.792F2250.	G01X-71.999F2500.
G01X-73.055F2500.	G03X-71.658Y-105.488I-33.501J
G02X-74.9Y-119.942I-32.445J9.623F2250.	4.792F2250.
G01X-136.1F2500.	G01Y-105.449F2500.
G03X-133.309Y-124.773I30.6J14.454F2250.	X-139.342
G01X-77.691F2500.	G02X-138.99Y-100.618I33.842J039F2250.
G 0 2 X - 8 1 . 7 5 8 Y - 1 2 9 . 6 0 4 I -	G01X-72.01F2500.
27.809J19.285F2250.	G03X-73.078Y-95.787I-33.49J-4.87F2250.
G01X-129.242F2500.	G01X-137.922F2500.
G03X-123.03Y-134.435I23.742J 24.116F2250.	G02X-136.063Y-90.956I32.422J- 9.701F2250.
G01X-87.97F2500.	G01X-74.937F2500.
G02X-103.43Y-139.266I-17.53J 28.947F2250.	G03X-77.745Y-86.125I-30.563J- 14.532F2250.
G01X-107.57F2500.	G01X-133.255F2500.
G03X-107.57Y-139.266I2.07J33.778F2250.	G02X-129.162Y-81.294I27.755J-
G01Z-21.796F3560.	19.363F2250.
X-103.43F2500.	G01X-81.838F2500.

G03X-88.099Y-76.462I-23.662J-24.194F2250.

G01X-122.901F2500.

G03X-122.901Y-76.462I17.401J-29.026F2250.

G01Z2.5F2525.

M30

%

For Finishing

Select NC sequence - Machining - Finishing - Done - Select tool and enter parameters like

Figure 25: Parameters for Finishing

Figure 26: Play Path for Finishing

Cut feed, Step depth, Step over, Profile stock allow, scan type and spindle speed.

Type of Cutter - 8 R0.5 Bull nose cutter

Create volume and Select Playpath

After completing Playpath, Select NC check

Machining \rightarrow CL data \rightarrow NC sequence \rightarrow sequence \rightarrow file \rightarrow MCD file.

Done . Enter name . ok . Done.

NC PROGRAM FOR FINISHING PROCESS

%

G71

O0002

(D:\sa\pistonhousing\seq0002.ncl.1)

N0010T1M06

S3575M03

G00X-68.866Y-142.971

G43Z2.5H01M08

Z.75

G01Z0.F1500.

X-68.01

X-68.011Y-141.263

X-68.856Y-142.127

X-69.722Y-142.971

X-68.866

X-68.709Y-143.008

X-68.567Y-143.101

X-68.298Y-143.342

X-68.157Y-143.434

X-68.Y-143.471

X-67.51	X-73.418Y-144.248
X-67.511Y-139.994	X-73.693Y-144.469
X-68.635Y-141.19	X-66.625Y-144.472
X-69.796Y-142.349	X-66.522Y-144.509
X-70.993Y-143.47	X-66.442Y-144.601
X-68.Y-143.471	X-66.306Y-144.842
X-67.843Y-143.508	X-66.226Y-144.935
X-67.701Y-143.601	X-66.123Y-144.972
X-67.432Y-143.842	X-66.01
X-67.29Y-143.934	X-66.013Y-135.875
X-67.133Y-143.972	X-67.412Y-137.606
X-67.01	X-68.886Y-139.274
X-67.012Y-138.678	X-70.434Y-140.874
X-68.263Y-140.073	X-72.051Y-142.404
X-69.565Y-141.421	X-73.734Y-143.861
X-70.916Y-142.721	X-74.429Y-144.421
X-72.313Y-143.97	X-75.133Y-144.969
X-67.133Y-143.972	X-66.123Y-144.972
X-67.03Y-144.009	X-66.02Y-145.009
X-66.949Y-144.101	X-65.941Y-145.102
X-66.809Y-144.342	X-65.805Y-145.342
X-66.728Y-144.435	X-65.725Y-145.435
X-66.625Y-144.472	X-65.623Y-145.472
X-66.51	X-65.51
X-66.512Y-137.307	X-65.513Y-134.372
X-67.783Y-138.8	X-66.772Y-136.035
X-69.112Y-140.243	X-68.1Y-137.643
X-70.495Y-141.634	X-69.495Y-139.194
X-71.931Y-142.969	X-70.953Y-140.684

X-72.473Y-142.112	X-64.514Y-131.105
X-74.052Y-143.475	X-65.576Y-132.725
X-75.332Y-144.492	X-66.701Y-134.3
X-76.643Y-145.469	X-67.889Y-135.83
X-65.623Y-145.472	X-69.137Y-137.311
X-65.52Y-145.509	X-70.443Y-138.741
X-65.44Y-145.602	X-71.805Y-140.118
X-65.304Y-145.843	X-73.22Y-141.439
X-65.225Y-145.935	X-74.688Y-142.703
X-65.122Y-145.972	X-76.376Y-144.029
X-65.009	X-78.118Y-145.285
X-65.014Y-132.787	X-148.94Y-101.898
X-66.165Y-134.416	X-149.044Y-103.46
X-67.381Y-135.997	X-149.092Y-105.313
X-68.661Y-137.527	X-149.089Y-105.488
X-70.002Y-139.003	X-149.092Y-105.491
X-71.402Y-140.424	X-149.072Y-106.811
X-72.859Y-141.787	X-149.014Y-108.069
X-74.37Y-143.089	X-148.988Y-108.444
X-75.627Y-144.088	X-148.919Y-109.332
X-76.915Y-145.048	X-148.896Y-109.606
X-78.231Y-145.968	X-148.757Y-110.878
X-65.122Y-145.972	X-148.684Y-111.401
X-65.02Y-146.009	X-148.55Y-112.34
X-64.94Y-146.102	X-148.297Y-113.774
X-64.804Y-146.343	X-148.036Y-115.008
X-64.725Y-146.435	X-147.97Y-115.307
X-64.622Y-146.472	X-147.647Y-116.612
X-64.509	X-147.208Y-118.166

X-146.727Y-119.651
X-146.219Y-121.045
X-146.153Y-121.22
X-145.585Y-122.619
X-145.549Y-122.698
X-144.948Y-124.035
X-144.896Y-124.147
X-144.166Y-125.617
X-143.36Y-127.095
X-142.493Y-128.548
X-142.384Y-128.716
X-141.595Y-129.926
X-141.409Y-130.195
X-140.528Y-131.435
X-139.447Y-132.835
X-138.364Y-134.124
X-137.598Y-134.97
X-137.151Y-135.459
X-136.964Y-135.654
X-135.798Y-136.829
X-134.452Y-138.077
X-133.083Y-139.242
X-132.53Y-139.677
X-131.624Y-140.383
X-131.406Y-140.542
X-130.056Y-141.505
X-128.482Y-142.53
X-127.034Y-143.385

X-126.756Y-143.543

X-125.327Y-144.306 X-123.485Y-145.197 X-121.743Y-145.94

X-120.047Y-146.579

X-119.149Y-146.877

X-118.223Y-147.181

X-117.325Y-147.435

X-116.356Y-147.706

X-115.482Y-147.911

Z2.5

M30

%

Cavity

Select New - Manufacturing - NC Assembly - Enter name - Select units - ok

Retrieving the cavity in to manufacturing

Creating Workpiece

Set up the machine tool by selecting type of machine, cutting tool, Machine zero and retract.

Figure 27: Cavity in Manufacturing (NC Assembly) Module

**MODOS: (Active Printed Rights of Applicates Products Test Forder Neg

**Line Control of Control

Figure 28: Work Piece for Cavity

- MICROSCI (La two) PRAINCENTR WARRIES SO

DE DE DEV THE BORD BARRIES DE AQUICANTE ENGLISHE LINE BORD BARRIES DE LA CANADA DEL CANADA DEL CANADA DE LA CANADA DE LA CANADA DE LA CANADA DEL CANADA D

For Roughing

Select NC sequence - Machining - Volume - Done - Select tool and enter parameters like Cut feed, Step depth, Step over, Profile stock allow, rough stock allow, scan type and spindle speed.

Create volume.

Select Playpath

After completing Playpath, Select NC check

Machining \rightarrow CL data \rightarrow NC sequence \rightarrow sequence \rightarrow file \rightarrow MCD file.

Done . Enter name . ok . Done.

Figure 29: Playpath for Roughing

WYCO0002 (seller) **Predictoric Val Alline 5:0

Fin bot 1 Now Finer - Days - Wingles in No Applicable Records Toda Wyndow Help

**Construction to enthronic

Precision space for old ** Toda of 10 does.

Precision space for old ** Toda of 10 does.

Precision space for old ** Toda of 10 does.

Precision space for old ** Toda of 10 does.

Precision space for old ** Toda of 10 does.

Precision space for old ** Toda of 10 does.

Precision space for old ** Toda of 10 does.

Precision space for old ** Toda of 10 does.

Precision space for old ** Toda of 10 does.

Precision space for old ** Toda of 10 does.

Precision space for old ** Toda of 10 does.

Precision space for old ** Toda of 10 does.

Precision space for old ** Toda of 10 does.

Precision space for old ** Toda of 10 does.

Precision space for old ** Toda of 10 does.

Precision space for old ** Toda of 10 does.

Precision space for old ** Toda of 10 does.

Precision space for old ** Toda of 10 does.

Precision space for old ** Toda of 10 does.

Precision space for old ** Toda of 10 does.

Precision space for old ** Toda of 10 does.

Precision space for old ** Toda of 10 does.

Precision space for old ** Toda of 10 does.

Precision space for old ** Toda of 10 does.

Precision space for old ** Toda of 10 does.

Precision space for old ** Toda of 10 does.

Precision space for old ** Toda of 10 does.

Precision space for old ** Toda of 10 does.

Precision space for old ** Toda of 10 does.

Precision space for old ** Toda of 10 does.

Precision space for old ** Toda of 10 does.

Precision space for old ** Toda of 10 does.

Precision space for old ** Toda of 10 does.

Precision space for old ** Toda of 10 does.

Precision space for old ** Toda of 10 does.

Precision space for old ** Toda of 10 does.

Precision space for old ** Toda of 10 does.

**Precision space for old ** Toda of 10 do

Figure 30: NC Check for Roughing

NC PROGRAM

%

G71

O0003

(D:\sa\pistonhousing\seq2001.ncl.1)

N0010T1M06

S2500M03

G00X-2.893Y-2.866

G43Z0.H01

G01Z-1.F2500.

X-208.107

Y-3.865

X-2.893

Y-4.864

X-208.107

Y-5.863

X-2.893

Y-6.863

X-97.011

G02X-93.032Y-7.862I-8.489J-42.235

G01X-2.893	X-148.315Y-38.607
Y-8.861	X-151.598
X-90.11	Y-39.6
G02X-87.717Y-9.86I-15.39J-40.237	X-148.546
G01X-2.893	X-148.754Y-40.592
Y-10.859	X-151.598
X-85.659	Y-41.585
G02X-83.842Y-11.858I-19.841J-38.239	X-148.937
G01X-2.893	X-149.097Y-42.578
Y-12.857	X-151.598
X-82.209	Y-43.571
X-80.723Y-13.856	X-149.234
X-2.893	X-149.348Y-44.564
Y-14.855	X-151.598
X-79.36	Y-45.556
X-78.1Y-15.854	X-149.439
X-2.893	X-149.508Y-46.549
Y-16.854	X-151.598
X-76.931	Y-47.542
/X-75.842Y-17.853	X-149.554
X-2.893	X-149.578Y-48.535
Y-18.852X-147.142Y-34.636	X-151.598
X-151.598	Y-49.527
Y-35.628	X-149.58
X-147.474	X-149.559Y-50.52
X-147.779Y-36.621	X-151.598
X-151.598	Y-51.513
Y-37.614	X-149.516
X-148.06	X-149.45Y-52.506

X-151.598	Y-67.398
Y-53.499	X-145.604
X-149.362	X-145.136Y-68.391
X-149.251Y-54.491	X-151.598
X-151.598	Y-69.383
Y-55.484	X-144.637
X-149.117	X-144.106Y-70.376
X-148.96Y-56.477	X-151.598
X-151.598	Y-71.369
Y-57.47	X-143.542
X-148.78	X-142.943Y-72.362
X-148.576Y-58.463	X-151.598
X-151.598	Y-73.355
Y-59.455	X-142.308
X-148.348	X-141.634Y-74.347
X-148.096Y-60.448	X-151.598
X-151.598	Y-75.34
Y-61.441	X-140.92
X-147.819	X-140.162Y-76.333
X-147.516Y-62.434	X-151.598
X-151.598	Y-77.326
Y-63.427	X-139.359
X-147.188	X-138.506Y-78.319
X-146.834Y-64.419	X-151.598
X-151.598	Y-79.311
Y-65.412	X-137.599
X-146.452	X-136.635Y-80.304
X-146.042Y-66.405	X-151.598
X-151.598	Y-81.297

X-135.607

X-134.509Y-82.29

X-151.598

Y-83.282

X-133.332

X-132.066Y-84.275

X-151.598

Y-85.268

X-130.698

X-129.21Y-86.261

X-151.598

Y-87.254

X-127.576

G03X-125.764Y-88.246I22.076J38.156

G01X-151.598

Y-89.239

X-123.718

G03X-121.35Y-90.232I18.218J40.141

G01X-151.598

Y-91.225

X-118.483

G03X-114.661Y-92.218I12.983J42.127

G01X-151.598

Y-93.21

X-59.952

X-151.598

Y-94.203

X-60.773

G02X-63.416Y-95.196I-2.643J3.021

G01X-151.598

X-149.582Y-49.098

G02X-149.582Y-49.098I44.082J0.

G01Z0.

G00X-147.584Y-2.996

Z-139.07

G01Z-140.28

G03X-151.598Y-7.014I.005J-4.019

G01Y-95.196

X-63.416

G03X-59.402Y-91.182I0.J4.014

G01Y-2.866

Z0.

M30

%

For Finishing

Select NC sequence - Machining - Finishing - Done - Select tool and enter parameters like Cut feed, Step depth, Step over, Profile stock allow, scan type and spindle speed.

Create volume and Select Playpath

Figure 32: NC Check for Finishing

After completing Playpath, Select NC check

Machining \rightarrow CL data \rightarrow NC sequence \rightarrow sequence \rightarrow file \rightarrow MCD file.

Done . Enter name . ok . Done.

NC PROGRAM

%

G71

O0004

(D:\sa\pistonhousing\seq2002.ncl.1)

N0010T1M06

S3500M03

G00X-194.399Y-17.749

G43Z0.H01

Z-21.546

G01Z-23.046F2500.

Y-18.923

X-193.99Y-17.746

X-193.566Y-16.574

X-194.399

Y-17.749

X-194.436Y-17.906

X-194.528Y-18.047

X-194.769Y-18.316

X-194.862Y-18.458

X-194.899Y-18.615

Y-22.12

X-194.26Y-20.09

X-193.576Y-18.074

X-192.845Y-16.074

X-194.899

Y-18.615

X-194.936Y-18.772

X-195.028Y-18.914

X-195.269Y-19.183

X-195.362Y-19.325

X-195.399Y-19.482

Y-25.751

X-194.689Y-23.172

X-193.905Y-20.615

X-193.048Y-18.082

X-192.119Y-15.574

X-195.399

Y-19.482

X-195.436Y-19.639

X-195.528Y-19.78

X-195.769Y-20.049

X-195.862Y-20.191

X-195.899Y-20.348

X-104.617Y-105.093

X-104.265Y-105.138	X-47.671Y-53.025
X-103.918Y-105.205	X-47.864Y-52.73
X-103.236Y-105.392	X-48.161Y-52.222
X-102.901Y-105.503	X-48.314Y-51.903
X-102.572Y-105.637	X-48.533Y-51.352
X-101.934Y-105.949	X-48.645Y-51.017
X-101.628Y-106.121	X-48.734Y-50.678
X-101.324Y-106.32	X-48.845Y-50.097
Z-35.545	X-48.89Y-49.745
G00X-107.095Y-105.137	X-48.913Y-49.392
Z-36.045	Y-48.804
G01Z-37.045	X-48.89Y-48.451
X-106.748Y-105.07	X-48.845Y-48.099
X-106.395Y-105.024	X-48.734Y-47.518
X-105.676Y-104.967	X-48.645Y-47.179
X-105.325	X-48.533Y-46.844
X-104.605Y-105.024	X-48.314Y-46.293
X-104.252Y-105.07	X-48.161Y-45.974
X-103.905Y-105.137	X-47.989Y-45.668
X-103.407Y-105.271	X-47.671Y-45.171
Z-35.045	X-47.458Y-44.886
G00X-45.506Y-54.994	X-47.229Y-44.616
G01Z-35.545	X-46.825Y-44.188
X-45.806Y-54.811	X-46.564Y-43.952
X-46.096Y-54.609	X-46.286Y-43.731
X-46.564Y-54.244	X-45.806Y-43.384
X-46.825Y-54.007	X-45.506Y-43.202
X-47.069Y-53.755	X-45.357Y-43.125
X-47.458Y-53.31	Z-35.045

G00X-47.119Y-54.331	G00X-48.564Y-52.814
G01Z-36.045	Z-35.545
X-47.364Y-54.078	G01Z-36.545
X-47.807Y-53.573	X-48.736Y-52.508
X-48.02Y-53.289	X-48.889Y-52.189
X-48.38Y-52.723	X-49.151Y-51.528
X-48.552Y-52.417	X-49.263Y-51.193
X-48.705Y-52.098	X-49.352Y-50.853
X-48.954Y-51.472	X-49.484Y-50.156
X-49.065Y-51.137	X-49.53Y-49.804
X-49.154Y-50.797	X-49.553Y-49.452
X-49.28Y-50.138	Y-48.744
X-49.325Y-49.785	X-49.53Y-48.392
X-49.348Y-49.433	X-49.484Y-48.04
Y-48.763	X-49.352Y-47.342
X-49.325Y-48.411	X-49.263Y-47.003
X-49.28Y-48.059	X-49.151Y-46.668
X-49.154Y-47.399	X-48.889Y-46.007
X-49.065Y-47.059	X-48.736Y-45.688
X-48.954Y-46.724	X-48.564Y-45.382
X-48.705Y-46.098	X-48.278Y-44.928
X-48.552Y-45.779	Z-35.545
X-48.38Y-45.473	G00X-49.419Y-50.872
X-48.02Y-44.907	Z-36.045
X-47.807Y-44.623	G01Z-37.045
X-47.578Y-44.353	X-49.554Y-50.163
X-47.119Y-43.865	X-49.599Y-49.811
X-47.016Y-43.772	X-49.622Y-49.458
Z-35.045	Y-48.738

X-49.599Y-48.385

X-49.554Y-48.033

X-49.419Y-47.323

X-49.33Y-46.984

Z0.

M30

%

Side Cavity

Select New - Manufacturing - NC Assembly - Enter name - Select units - ok

Retrieving the side cavity in to manufacturing

Creating Workpiece

Set up the machine tool by selecting type of machine, cutting tool, Machine zero and retract.

For Roughing

Select NC sequence - Machining - Volume - Done - Select tool and enter parameters like Cut feed, Step depth, Step over, Profile stock allow, rough stock allow, scan type and spindle speed.

Figure 33: Side Cavity in Manufacturing (NC Assembly) Module

Figure 34: Work Piece for Side Cavity

Figure 35: Playpath for Roughing

Figure 36: NC Check for Roughing

Create volume and Select Play path

After completing Playpath, Select NC check

Machining \rightarrow CL data \rightarrow NC sequence \rightarrow

sequence \rightarrow file \rightarrow MCD file.

Done . Enter name . ok . Done.

NC PROGRAM

%

G71

O0003

(D:\sa\pistonhousing\seq2003.ncl.1)

N0010T1M06

S5000M03

G00X111.616Y-139.396

G43Z0.H01

G01X111.854Y-140.92Z-1.753F200.

X112.545Y-142.3Z-2.34

X113.625Y-143.402Z-2.684

X114.989Y-144.124Z-2.874

X116.508Y-144.395Z-2.94

X116.616Y-144.396

G03X116.616Y-144.396I0.J5.

G02X120.025Y-146.076I0.J-4.3

G01X120.153Y-146.242

G03X123.68Y-146.474I1.865J1.433

X116.616Y-149.396I-7.064J7.078

G02X120,228Y-151,363I0,J-4,3

G01X120.353Y-151.557

G03X123.997Y-152.454I2.298J1.484

X116.616Y-154.396I-7.381J13.058

G02X120.313Y-156.501I0.J-4.3

G01X120.342Y-156.549

G03X124.298Y-157.861I2.734J1.624

X116.616Y-159.396I-7.682J18.465

G02X120.34Y-161.546I0.J-4.3

G01X120.474Y-161.779

G03X124.192Y-163.22I2.755J1.59

X116.616Y-164.396I-7.576J23.824

G02X120.34Y-166.546I0.J-4.3

G01X120.376Y-166.608

55.984Y-107.449

G03X249.995Y-98.248I-78.935J-44.833

G01X248.896Y-97.165Z-10.886

X247.519Y-96.468Z-10.702

X245.996Y-96.224Z-10.363

X244.47Y-96.457Z-9.788

X243.088Y-97.143Z-8.442

X243.001Y-97.206Z-7.945

Z-1.945

G00X237.162Y-205.787

Z-4.945

G01Z-7.945

X238.092Y-207.018Z-9.734

X239.353Y-207.907Z-10.332

X240.825Y-208.37Z-10.684

X242.368Y-208.361Z-10.877

X243.835Y-207.883Z-10.945

X243.931Y-207.833

G03X249.297Y-204.421I-20.16J37.632

G01X251.861Y-202.359

X252.422Y-201.866	X258.546Y-195.2
G03X266.136Y-139.266I-135.326J62.448	G02X261.59Y-192.804I8.912J-8.187
G01X266.108Y-136.141	G03X266.814Y-175.565I-138.893J51.501
X265.993Y-133.019	G01X267.464Y-170.904
X265.698Y-131.775	X267.677Y-169.138
X264.848Y-128.564	X268.148Y-164.223
X263.904Y-125.38	X268.408Y-158.971
X262.586Y-121.544	X268.437Y-157.969
X260.806Y-117.109	X268.434Y-153.158
X260.008Y-115.301	X268.398Y-151.88
X258.674Y-112.57	X268.152Y-147.299
X257.792Y-111.305Z-10.886	X267.845Y-144.275
X256.565Y-110.369Z-10.702	X267.496Y-141.256
X255.111Y-109.851Z-10.363	X266.701Y-136.339
X253.569Y-109.801Z-9.788	X266.053Y-133.487
X252.085Y-110.224Z-8.442	X265.483Y-132.054Z-10.886
X251.988Y-110.271Z-7.945	X264.502Y-130.862Z-10.702
Z-1.945	X263.206Y-130.026Z-10.363
G00X245.482Y-201.346	X261.716Y-129.625Z-9.788
Z-4.945	X260.174Y-129.698Z-8.442
G01Z-7.945	X260.069Y-129.72Z-7.945
X246.681Y-202.316Z-9.734	Z-1.945
X248.119Y-202.875Z-10.332	G00X254.792Y-190.855
X249.659Y-202.969Z-10.684	Z-4.945
X251.155Y-202.589Z-10.877	G01Z-7.945
X252.463Y-201.771Z-10.945	X255.74Y-192.073Z-9.734
X252.544Y-201.699	X257.014Y-192.944Z-10.332
X254.009Y-200.373	X258.492Y-193.385Z-10.684
X256.309Y-197.915	X260.035Y-193.354Z-10.877

X261.495Y-192.855Z-10.945	X126.948Y-211.42Z-7.945
X261.59Y-192.804	Z-1.945
G02X266.363Y-191.335I5.868J-10.583	G00X60.026Y-186.089
X265.523Y-181.146I10.654J6.008	Z-4.945
G01X266.28Y-178.252	Z-97.231
X266.525Y-176.911	G00X182.212Y-118.939
X266.565Y-175.369Z-10.886	Z-100.231
X266.133Y-173.888Z-10.702	G01Z-103.231
X265.269Y-172.609Z-10.363	X183.738Y-119.166Z-105.02
X264.057Y-171.654Z-9.788	X185.261Y-118.916Z-105.619
X262.612Y-171.115Z-8.442	X186.635Y-118.214Z-105.97
X262.505Y-171.094Z-7.945	X187.73Y-117.127Z-106.164
Z-1.945	X188.441Y-115.758Z-106.231
G00X124.95Y-211.859	X188.475Y-115.655
Z-4.945	X188.595Y-115.269
G01Z-7.945	X188.293Y-115.188
X123.903Y-212.993Z-9.734	X186.759Y-115.024Z-106.172
X123.251Y-214.392Z-10.332	X185.247Y-115.335Z-105.988
X123.057Y-215.922Z-10.684	X183.903Y-116.092Z-105.65
X123.339Y-217.439Z-10.877	X182.853Y-117.223Z-105.075
X124.071Y-218.798Z-10.945	X182.198Y-118.62Z-103.728
X124.137Y-218.884	X182.169Y-118.724Z-103.231
G02X125.715Y-221.504I-9.378J-7.432	Z-97.231
X127.571Y-218.463I11.06J-4.667	G00X182.354Y-123.787
G01X128.368Y-217.142Z-10.886	Z-100.231
X128.723Y-215.64Z-10.702	G01Z-103.231
X128.604Y-214.102Z-10.363	X180.837Y-124.064Z-105.02
X128.021Y-212.673Z-9.788	X179.475Y-124.791Z-105.619
X127.03Y-211.49Z-8.442	X178.4Y-125.898Z-105.97

X177.714Y-127.28Z-106.164	X183.784Y-124.771Z-106.231
X177.482Y-128.805Z-106.231	Z-100.231
X177.484Y-128.913	G00X184.931Y-119.245
X177.517Y-130.222	Z-103.231
X183.091Y-131.716	G01Z-106.231
X184.628Y-127.347	X183.388Y-119.285Z-108.02
X184.909Y-125.83Z-106.172	X181.931Y-119.793Z-108.619
X184.715Y-124.299Z-105.988	X180.699Y-120.722Z-108.97
X184.063Y-122.901Z-105.65	X179.808Y-121.982Z-109.164
X183.016Y-121.768Z-105.075	X179.344Y-123.453Z-109.231
X181.673Y-121.008Z-103.728	X179.329Y-123.56
X181.571Y-120.971Z-103.231	X179.039Y-125.8
Z-97.231	X178.786Y-128.044
G00X183.232Y-115.216	X180.786Y-128.6
Z-103.231	X181.549Y-128.548
G01Z-106.231	X182.275Y-128.421
X181.883Y-115.965Z-108.36	G03X186.999Y-116.225I-187.862J79.783
X180.827Y-117.089Z-108.969	G01X184.099Y-115.47
X180.163Y-118.482Z-109.212	X182.564Y-115.316Z-108.933
X180.028Y-119.06Z-109.231	X181.055Y-115.638Z-107.717
X179.329Y-123.56	X180.627Y-115.824Z-106.231
G03X185.133Y-119.504I.88J4.922	Z-100.231
X184.101Y-115.466I-5.045J.861	G00X178.862Y-127.332
G01X180.878Y-114.585	Z-103.231
X180.028Y-119.06	G01Z-106.231
X180.004Y-120.602Z-109.167	X180.102Y-128.25Z-108.989
X180.451Y-122.079Z-108.965	X181.032Y-128.624Z-109.231
X181.327Y-123.349Z-108.591	X182.062Y-128.922
X182.548Y-124.292Z-107.934	X182.274Y-128.424

X182.653Y-126.928Z-109.172

X182.557Y-125.388Z-108.988

X181.997Y-123.951Z-108.65

X181.025Y-122.752Z-108.075

X179.734Y-121.907Z-106.728

X179.635Y-121.864Z-106.231

Z0.

M30

%

For Finishing

Select NC sequence - Machining - Finishing - Done - Select tool and enter parameters like Cut feed, Step depth, Step over, Profile stock allow, scan type and spindle speed.

Create volume.

Select Playpath

After completing Playpath, Select NC check

Machining \rightarrow CL data \rightarrow NC sequence \rightarrow sequence \rightarrow file \rightarrow MCD file.

Done . Enter name . ok . Done.

RESULTS

Die Design Calculations

Tonnage Calculation

Projected area of one component (a) = 36252.7 mm^2

Number of cavities(n) = 1

Projected area of Casting(A) = axn

 $= 1494.77 \times 1$

 $= 36252.7 \text{ mm}^2$

Area of Slide

Projected Area of Slide 1 = 55987 mm²

Projected Area of Slide 2 = 84078 mm²

Projected area including overflows and feed system

 $(AF) = A \times c/100$

 $= 36252.7 \times 40/100$

 $= 14501 \text{ mm}^2$

Total Projected area = A + A1 + A2 + AF

= 36252.7 + 55987 + 84078 + 14501

 $= 190818.7 \text{ mm}^2$

Specific Injection pressure = 800 kgf/cm²

 $= 800 \times 10^{-2} \text{ kgf/mm}^2$

Total force acting on the die plate (F) = Projected area x Injection Pressure

 $= 190818.7 \times 8 \text{ kgf}$

= 1526549.6 kg

= 1526.5496tons

Considering machine efficiency of 80%,

Locking tonnage required = $F \times 1.2$

 $= 1526.5496 \times 1.2$

= 1831.85T

Hence according to locking tonnage we can select 2500T

Shot Weight Calculation

One component volume (v) = 31675.68 mm³

Total component volume (V) = v x n

- $= 31675.68 \times 1$
- $= 31675.68 \text{ mm}^3$

Volume of component + Volume of overflow and feed system

- $(Vt) = V \times (1 + c/100)$
- $= 31675.68 \times (1 + 40/100)$
- $= 79000 \text{ mm}^3$
- $= 79000 \times 2.6e^{-6}$
- = 205 gms
- = 0.205 kgs

Plunger Diameter Calculation

Actual shot volume = $Vt + \pi d^2h/4$

Where h is biscuit thickness and

d is the plunger diameter

h = biscuit thickness = 4 mm

No. of biscuits = 6

Total thickness = 24 mm

Stroke length for 2500T machine (I) = 220 mm

Effective stroke length (L) = I-h

= 220-4

 $= 216 \, \text{mm}$

Assume fill ratio = f = 0.5

Volume delivered by machine = $\pi d^2 x (L/4) x f$

(i.e.) Vt + $\pi d^2h/4 = \pi d^2 x (L/4) x f$

 $Vt = \pi d^2 x (L/4) x f - \pi d^2 h/4$

 $Vt = (\pi d^2/4) (Lf-h)$

 $79000 = (\pi d^2/4) (216 \times 0.5-4)$

 $5346.5778 = d^2$

d = 31.67 mm

Fill Ratio Calculation

Fill ratio = Metal volume/shot sleeve volume

 $= Vt + \pi d^2 x (h/4)/\pi d^2 x (L/4)$

= 79000 + 3038.5/3038.5*26

Fill ratio = 1.038

We have to reduce 3% of plunger dia = 31.67-

0.95 = 30.72 mm

= 30 mm

Fill Time Calculation

Fill Time = $k [T_i - T_f + S_z]T/[T_f - T_d]$

where

k, empirical derived constant = 0.0346

 T_i , Temperature as it enters in to the die = 640 °C

T_f, Minimum flow temperature of metal = 580

 T_{d} , Tempearture of die cavity surface just before the metal enters = 200 °C

S, percent solid fraction allowable in the metal at the end of filling = 30%

Z, Units conversion factor = 4.8

T, Casting thickness = 8.701 mm

Fill Time = $k[T_1 - T_1 + S_2]T/[T_1 - T_2]$

Fill Time = 0.0346 [640 - 580 + 30*4.8] 8.7/[580 - 200]

= 74.736/320

= 161 millisecs

CONCLUSION

In our project we have modeled a piston housing used in a hydraulic oil filter pump in 3D modeling software Pro/Engineer. We have designed total cavity die for the piston housing. We have done die design calculations for piston housing. From the calculations, we have to select 2500T machine.

We have extracted core, cavity, prepared total die for the piston housing. We have done CNC programming for core, cavity and side cavity. We have prepared the total casting tool die of piston housing which is ready for manufacturing.

BIBLIOGRAPHY

 Groover (2006), CAD/CAM: Computer-Aided Design and Manufacturing, Pearson Education, India

- Ibrahim Zeid (2010), CAD/CAM Theory
 Practice 2E, Tata McGraw-Hill
 Education
- 3. Mikell P Groover (1986), Industrial Robotics, McGraw-Hill
- 4. Gupta A K and S K Arora (2013), Industrial Automation and Robotics, Third Edition, Laxmi Publications
- 5. Miltiadis A Boboulos (2010), Automation and Robotics, Book Boon
- Nand K Jha (1991), Handbook of Flexible Manufacturing Systems, Academic Press Inc
- 7. Nageswara Rao P (2004), CAD/CAM Principles and Applications (2nd Edition), McGrawHill.

International Journal of Mechanical Engineering Research and Technology #301, Balaji Heights Apts, Balaji Hills, Uppal, Hyderabad, India. Phone: +91-09441351700 (or) +91-09059645577

Email: info.ijmert@gmail.com (or) editor@ijmert.net

Website: www.ijmert.net

