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ABSTRACT:  

In this study, we suggested a simulation approach for the flow with heat transfer that combines the dual-

resolution grid method and the seamless immersed boundary method (SIBM). When applying SIBM to the 

flow simulation with heat transfer, a finer grid is used than in the flow simulation without heat transfer 

since the energy equation requires a higher grid resolution than the Navier- Stokes equation. Particularly, 

solving the pressure equation at the grid resolution required by the energy equation results in a 

considerable loss of computing efficiency because the majority of the computational time is often used to 

solve the pressure equation in the incompressible flow. The Navier-Stokes equations and the energy 

equations are solved at different speeds in the current method. 
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      INTRODUCTION 

Computational fluid dynamics does a good job of 

handling the flow with heat transport issue, which has 

significant engineering implications. The flow inside 

a computer's enclosure is an illustration of flow with 

heat transfer, and cooling the CPU is crucial for the 

computer to run steadily. However, since computers 

have recently become smaller, their internal 

architecture has complicated, necessitating the need 

for more effective cooling. There are numerous 

components with complex shapes in the 

computational area of the flow simulation within the 

computer housing.The immersed boundary method 

(IBM) [1], a Cartesian grid methodology, has gained 

popularity in recent years for simulating flow around 

objects of complex shape. Within IBM, 

 

SIBM ON DUAL-RESOLUTION GRID 

Governing Equations 

The governing equations are the continuity equation, the incompressible Navier-Stokes equations and the energy 

equation. The forcing term and heat flux are added to the Navier-Stokes equation and the energy equation for the 

SIBM. The non-dimensional governing equations are written as, 

 
 

𝜕𝜕𝑢𝑖𝑖  
= 0, (1) 

𝜕𝜕𝑥𝑖𝑖 

𝜕𝜕𝑢𝑖𝑖 𝜕𝜕𝑝 = 𝐹 − + 𝐺 , 
 

𝜕𝜕𝑡 𝑖𝑖 
𝜕𝜕𝑥𝑖𝑖 

𝑖𝑖 

𝜕𝜕𝑇 
= 𝐹 

 + 𝑄𝑄. (3) 

(2) 
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𝑖𝑖 

𝑈�𝑛+1 𝑛−𝑢 

𝑖𝑖 

𝜕𝜕𝑡 𝑇 

 

The last term in Eq. (2), (3), 𝐺𝑖𝑖 and 𝑄𝑄 denote the additional forcing term and heat flux term for the SIBM. 𝐹𝑖𝑖 and 

𝐹𝑇 denote the convective and diffusion terms in Eq. (2), (3). 

 

 
𝜕𝜕𝑢𝑖𝑖 1    𝜕𝜕2𝑢𝑖𝑖 𝐹𝑖𝑖  = −𝑢𝑗𝑗  𝜕𝜕𝑥  

+ 
𝑅𝑒 𝜕𝜕𝑥 𝜕𝜕𝑥 

𝑗𝑗 𝑗𝑗 𝑗𝑗 

(4) 

𝜕𝜕𝑇 1 𝜕𝜕2𝑇 
𝐹𝑇  = −𝑢𝑗𝑗 𝜕𝜕𝑥  

+ 
𝑃𝑟 ∙ 𝑅𝑒 𝜕𝜕𝑥 𝜕𝜕𝑥 

𝑗𝑗 𝑗𝑗 𝑗𝑗 

(5) 

 

Where, 𝑅𝑒  denotes the Reynolds number defined by 𝑅𝑒 = 𝐿0𝑈0⁄𝜈𝜈0  and 𝑃𝑟  denotes the Prandtl number defined 

by 𝑃𝑟 = 𝜈𝜈0⁄𝛼0 . 𝐿0, 𝑈0 , 𝜈𝜈0  and 𝛼0  are the reference length, the reference velocity, the kinematic viscosity and the 

thermal diffusivity, respectively. 

Numerical Method 

The incompressible Navier-Stokes equations and the energy equation, i.e. Eq. (2), (3), are solved by the finite 

difference method on the collocated grid arrangement. The convective, diffusion and pressure terms are 

discretized by the conventional second order centered finite difference method. The time derivative terms are 

discretized by the forward Euler method. For the time integration of the Navier-Stokes equations, the fractional 

step approach [6] based on the forward Euler method is applied. For the incompressible Navier-Stokes equations 

in the IBM, the fractional step approach can be written by where 𝑢∗ denotes the fractional step velocity and ∆𝑡 is 

the time increment. The resulting pressure equation is solved by the SOR method. 

 

 

In order to apply the SIBM to the flow simulation with heat 

transfer, the additional forcing terms and heat flux term in 

the Navier-Stokes equations and the energy equation 

should be estimated. In this study, the direct forcing term 

estimation [7] is adopted for both the forcing terms and the 

heat flux term. The direct forcing term estimation for the 

forcing terms in the SIBM is shown in Fig. 1. In the figure, 𝐼, 𝐽 are the grid index. The estimation for the heat flux 

term in the isothermal condition is the same as for the forcing terms. The forcing terms and heat flux term can be 

determined by 

 
 

𝑛 
𝑖𝑖 

 
𝑛 
𝑖𝑖 

+ 
𝜕𝜕𝑝 

𝜕𝜕𝑥𝑖𝑖 
+ 𝑖     𝑖 𝑖𝑖 , (8) 

∆𝑡 

𝑄𝑄 = −𝐹𝑇 + 
𝑇� 𝑛+1  − 𝑇𝑛 

, 
∆𝑡 

(9) 

 

where  𝑈�𝑛+1    and  𝑇� 𝑛+1    are  predicted  velocity  and  temperature  that  satisfy  the  velocity  and  temperature 

conditions on the virtual boundary. At grid points in the fluid media adjacent to the virtual boundary, the predicted 

velocity and temperature are linearly interpolated from boundary conditions and surrounding values. At grid 

points in the solid media, these are determined from the velocity and temperature conditions at that grid point. 

𝑢∗ = 𝑢𝑛 + ∆𝑡 𝐹𝑛, 𝑖𝑖𝑖𝜕𝜕𝑝𝑛𝑢𝑛+1 = 𝑢∗ + 
∆𝑡 �− + 𝐺𝑛�, 

𝑖𝑖 𝑖𝑖 𝜕𝜕𝑥𝑖𝑖
𝑖𝑖 

(7) 

Seamless Immersed Boundary 

Method 

(6) 

 
 

𝐺 = −𝐹 
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Figure 1. Forcing points and direct forcing estimation in the SIBM 

Dual-Resolution Grid 

In this study, the Navier-Stokes equations and energy 

equations are solved at different resolutions by using 

the dual-resolution grid in order to perform efficiently 

the flow simulation with heat transfer. In the present 

method, the resolution of the energy equation is set to 

twice that of the Navier-Stokes equations. In this grid 

resolution condition, the positions of velocity, 

pressure and temperature components are defined as 

seen in Fig 2. When applying the dual-resolution grid 

method to the simulation for two-phase flows, the 

flow variables are generally defined in a staggered 

arrangement [4], [5], [8]. However, all flow variables 

are defined at cell center in this study because 

collocated grid are generally adopted in the flow 

simulation by the SIBM. In this case, the velocity 

component for the advective term in the energy 

equation is interpolated from the surrounding grid 

points because the positions of velocity components 

and temperature component are different. 
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Figure 2. The positions of velocity, pressure and temperature components on the dual-resolution grid 

FLOW AROUND a 2-DIMENSIONAL HEATED CIRCULAR CYLINDER 

In order to validate the SIBM on the dual-resolution grid, the flow around a 2-dimensional heated circular cylinder 

is considered. The computational domain is shown in Fig. 3. The reference length is a diameter of the circular 

cylinder 𝐷. The impulsive start determined by the uniform flow (𝑢 = 1, 𝑣 = 0, 𝑇 = 0) is adopted. On the inflow 

boundary, the velocity and temperature are fixed by the uniform flow and the pressure is imposed by the Neumann 

condition obtained by the normal momentum equation. The velocity and temperature are extrapolated from the 

inner points and the pressure is obtained by the Sommerfeld radiation condition [9] on the outflow and side 

boundaries. On the virtual boundary and inside the boundary, the non-slip (𝑢 = 0, 𝑣 = 0) and the isothermal (𝑇 

= 1) conditions are imposed. The Reynolds number is set as 𝑅𝑒 = 200, 218 and the Prandtl number is set as 𝑃𝑟 

= 0.717 according to references [10, 11]. 

 

 
Figure 3. Computational domain 

First, the influence by the grid resolution on the results on the single-resolution grid is investigated. The 

computational grid is the hierarchical Cartesian grid that is fine near the circular cylinder. The grid resolution 

near the circular cylinder is ∆= 𝐷⁄40, 𝐷⁄80, 𝐷⁄160 and 𝐷⁄320, respectively. In Table 1, the time-averaged 

drag coefficient, the amplitude of lift coefficient and the Strouhal number in 𝑅𝑒 = 200 are shown with the 

reference results [10]. The drag and lift coefficients (𝐶𝐷 and 𝐶𝐿) are determined by 

 
 

− ∫    �𝐺 
 
− 𝑢 𝜕𝜕𝑢  

− 
𝜕𝜕𝑢

�
 

𝐶𝐷 = 
𝑂𝑂 𝑥 𝑖𝑖 𝜕𝜕𝑥𝑖

 

2 𝜌0𝑈2𝐷 

𝜕𝜕𝑡 
,
 (10) 

− ∫    �𝐺 − 𝑢 𝜕𝜕𝑣  
− 

𝜕𝜕𝑣
�

 

𝐶𝐿 = 
𝑂𝑂 𝑦 𝑖𝑖 𝜕𝜕𝑥𝑖

 

2 𝜌0𝑈2𝐷 

𝜕𝜕𝑡 
,
 (11) 
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where 𝑂 denotes the region to which the forcing term is added in the SIBM. The results in each grid are in good 

agreement the reference ones. The respective characteristic quantities are in good agreement at grid resolutions 

from 𝐷⁄80 to 𝐷⁄320. Figure 4 shows the time averaged local Nusselt number on the circular cylinder surface in 

𝑅𝑒 = 218 with the reference results [11]. The local Nusselt number on the circular cylinder surface is determined 

by 

 

 
 

𝐷 𝜕𝜕𝑇(𝜃𝜃) 
𝑁𝑢(𝜃𝜃) = − , 

𝑇𝑣𝑏  − 𝑇∞      𝜕𝜕𝑟 
(12) 

 

where 𝑇𝑣𝑏   denotes the temperature on the virtual boundary of the circular cylinder and 𝜕𝜕𝑇(𝜃𝜃)⁄𝜕𝜕𝑟  denotes the 

temperature gradient of normal direction. The local Nusselt numbers in the fine grid is closer to the reference 

ones. The local Nusselt numbers are in good agreement when the grid resolution is 𝐷⁄160 and 𝐷⁄320. In the 

grid resolution 𝐷⁄80, it is not agreement it in the grid resolution 𝐷⁄160 or 𝐷⁄320. As a result, in the present 

method using the dual-resolution grid, the grid resolution near the circular cylinder is set to 𝐷⁄80 for the Navier-

Stokes equations and 𝐷⁄160 for the energy equation [12-15]. 

Table 1. Comparison of characteristic quantities (𝑅𝑒 = 200) 
 

 �𝐶�𝐷� 𝐶𝐿𝑎𝑚𝑝 𝑆𝑡 

∆= 𝐷⁄40 1.322 0.629 0.199 

∆= 𝐷⁄80 1.352 0.678 0.198 

∆= 𝐷⁄160 1.358 0.687 0.198 

∆= 𝐷⁄320 1.359 0.686 0.198 

Rosenfeld [10] 1.329 0.674 0.197 

 

 

 

 

Figure 4. Comparison of time averaged local Nusselt number on single-resolution grid (𝑅𝑒 = 218) 

The present method is verified by comparing the local Nusselt number on the circular cylinder surface with the 

result on the single-resolution grid. In this study, in order to arrange the computational grid effectively, the dual- 
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resolution grid is combined with the hierarchical Cartesian grid (shown Fig. 5). Figure 6 shows the time averaged 

local Nusselt number on the circular cylinder surface in 𝑅𝑒 = 218 on the single and dual-resolution grids. The 

local Nusselt number on the dual-resolution grid (∆= 𝐷⁄80-𝐷⁄160) is closer to the single-resolution grid 

(𝐷⁄160) than the single-resolution grid (𝐷⁄80). The difference between it on dual-resolution grid and the single- 

resolution grid (𝐷⁄160) appears because the velocity components for the advective term in the energy equation 

on the dual-resolution grid is interpolated. 

 
 

 
 

Figure 5. Computational grid combining dual-resolution grid and hierarchical grid 

 

 

Figure 6. Comparison of time averaged local Nusselt number on single and dual-resolution grids (𝑅𝑒 = 218) 

Finally, the computational time in each grid is compared. In Table 2, the computational time ratio based on the 

single grid (𝐷⁄160) to non-dimensional time 𝑡 = 200 in is 𝑅𝑒 = 200 shown. The computational time is decreased 

by 60% in the dual-resolution grid compared with it in the single-resolution grid (𝐷⁄160). And, the 

computational time in the dual-resolution grid is almost as it in the single-resolution grid (𝐷⁄80). Therefore, it 

is concluded that the computational time for the flow simulation with heat transfer by using the SIBM is greatly 

reduced by introducing the dual-resolution grid method. 

Table 2. Comparison of computational time (𝑅𝑒 = 200) 
 

 Computational time ratio 

Single 𝐷⁄80 0.39 

http://www.ijmert.com/


112 

Int. J. Mech. Eng. Res. & Tech 2017 

 

 

ISSN 2454 – 535X  

www.ijmert.com  

Vol. 1 Issue. 4, Nov 2013 

 

 

Int. J. Mech. Eng. Res. & Tech 20221 

Single 𝐷⁄160 1.00 

Dual 𝐷⁄80-𝐷⁄160 0.40 

 

CONCLUSIONS 

In this study, we proposed a simulation method combining the dual-resolution grid method and SIBM for the flow 

with heat transfer. First, we investigated the influence by the grid resolution on the results on the single-resolution 

grid for the flow around the 2-dimensional circular cylinder. As a result, it was confirmed that the required grid 

resolution was different between the result obtained by the Navier-Stokes equations and the result obtained by the 

energy equation. Therefore, the Navier-Stokes equations and the energy equation were solved at different grid 

resolutions by applying the present method combining the dual-resolution grid method. As a result, the Nusselt 

number obtained by the present method was close to the Nusselt number by the single-resolution grid with the 

same grid resolution for the energy equation. Furthermore, in the present simulations, the computational time in 

the present method was reduced by 60% compared to the single-resolution grid method with the same resolution 

for the energy equation because the Navier-Stokes equations are solved on a coarser grid than the energy equation. 

Therefore, it can be said that introducing the dual-resolution grid can greatly reduce the computation time for 

the flow simulation with heat transfer by using the SIBM regardless of the shape of the object. Finally, it is 

concluded that the present method combining the dual-resolution grid method and SIBM is very promising for 

the flow simulation with heat transfer involving objects with complicated shapes. 
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