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ABSTRACT: 

This study proposes and discusses the immersed boundary method (IBM) with the pressure boundary 

condition for flows containing moving objects of infinitesimal thickness. The pressure situation on the object 

border is not taken into account in the original IBM. Applying the initial IBM to the thin item results in 

pressure oscillations near the boundary as a result of the pressure difference between the object's front and 

back. The IBM with the pressure boundary condition was proposed in order to eliminate the pressure 

oscillations near the object boundary in the original IBM. The applicability of this method to thin objects can 

be improved because the IBM with the pressure boundary condition does not require the computational grid 

points inside the object. 
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INTRODUCTION 

Numerous numerical simulations of flow around objects with complex shapes in Cartesian coordinates have 

been carried out in recent years. Even if objects of different shapes are present in the computational domain, 

a new computational grid need not be created in Cartesian coordinates. When dealing with objects with 

complex shapes, the immersed boundary method (IBM) [1] is frequently utilized in the Cartesian grid 

approach. To satisfy the velocity constraint on the object boundary (virtual boundary), the forcing term is 

added to the momentum equations in the IBM at the grid point close to the object border. The direct forcing 

term estimation [2] is frequently used in the additional forcing term estimation for the IBM. When the direct 

forcing term estimation was used in the original IBM, the unphysical. 

IMMERSED BOUNDARY METHOD WITH PRESSURE BOUNDARY CONDITION 

Governing Equation The non-dimensional continuity equation and incompressible Navier-Stokes equations are written 

as,
𝜕𝜕𝑢𝑖𝑖  

= 0, (1)𝜕𝜕𝑥𝑖𝑖𝜕𝜕𝑢𝑖𝑖𝜕𝜕𝑝= 𝐹 −+ 𝐺 ,  

𝜕𝜕𝑡 𝑖𝑖 𝜕𝜕𝑥𝑖𝑖 

𝜕𝜕𝑢𝑖𝑖 

𝑖𝑖 

1 
 
𝜕𝜕2𝑢𝑖𝑖 

 
(3) 

𝐹𝑖𝑖  = −𝑢𝑗𝑗  𝜕𝜕𝑥
 +
 ,𝑅

𝑒 𝜕𝜕𝑥 𝜕𝜕𝑥 
𝑗𝑗 𝑗𝑗 𝑗𝑗 

(2) 
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𝑖𝑖 

𝑖𝑖 

 

where 𝑅𝑒 denotes the Reynolds number defined by 𝑅𝑒 = 𝑈𝐿/𝑣. 𝑈, 𝐿, and 𝑣 are the reference velocity, the reference 

length and the kinematic viscosity, respectively. The last term of Eq. (2), 𝐺𝑖𝑖 , denotes the additional forcing term for 

the IBM. 𝐹𝑖𝑖 denotes the convective and diffusion terms. 

 

Numerical Method 

The incompressible Navier-Stokes equations (2) are solved by the second order finite difference method on the 

collocated grid arrangement. The convective terms are discretized by the second order fully conservative finite 

difference method [7]. The diffusion and pressure terms discretized by the usual second order centered finite 

difference method. For the time integration, the fractional step approach [8] based on forward Euler method is 

applied. 

For the incompressible Navier-Stokes equations in the IBM, the fractional step approach can be written by 

 

 
𝑢∗ = 𝑢∗ + ∆𝑡𝐹𝑛, 

𝑖𝑖 𝑖𝑖 𝑖𝑖 
(4) 

𝜕𝜕𝑝𝑛 
𝑢𝑛+1 = 𝑢∗ + ∆𝑡 �− + 𝐺𝑖𝑖 �, 

𝑖𝑖 𝑖𝑖 𝜕𝜕𝑥𝑖𝑖 

(5) 

 

where 𝑢∗ denotes the fractional step velocity and ∆𝑡 is the time increment. The resulting pressure equation is 

solved by the SOR method. In this paper, The convergence criterion of the momentum equations and pressure 

equation is set as 𝜙𝜙𝑙2  < 1.0 × 10−6, where 𝜙𝜙𝑙2  is the L-2 residual of physical quantities 𝜙𝜙 , i.e., the velocity or 

pressure. 

Forcing Term Estimation 

In order to estimate the additional forcing term in the governing equations, 𝐺𝑖𝑖 , there are mainly two ways, that 

is, the feedback [9] [10] and direct [2] forcing term estimations. In this paper, the direct forcing term estimation 

in Fig 1 is adopted. For the forward Euler time integration, the forcing term can be determined by 

 

 
𝜕𝜕𝑝 𝑛 𝑈 �

𝑛+1 − 𝑢𝑛
 

𝐺 = −𝐹𝑛+ + 𝑖   𝑖 𝑖𝑖 , 
𝑖𝑖 𝑖𝑖 𝜕𝜕𝑥𝑖𝑖 ∆𝑡 

(6) 

 

where 𝑈�𝑛+1denotes the interpolated velocity by linear interpolation. Namely, the forcing term is specified as 

the velocity components at next time step satisfy the relation, 𝑈�𝑛+1  = 𝑢𝑛+1.  In this forcing term estimation for 
𝑖𝑖 𝑖𝑖 

the original IBM, the grid points added the forcing term are restricted near the virtual boundary. Then, the 

pressure distributions near the virtual boundary show unphysical oscillations. 
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Figure 1. Direct forcing term estimation Pressure Boundary Condition on 

Virtual BoundaryIn the present IBM, the pressure condition on the virtual 

boundary (𝜕𝜕𝑝 = 0) is considered. When the grid point 

𝜕𝜕𝑛 

on the front side of the plate is (𝐼, 𝐽) as Fig. 2, the pressure gradient in the 𝑥 direction is written as 

 

 
𝜕𝜕𝑝 𝑃�𝐼+1,𝐽  − 𝑝𝐼−1,𝐽 
� = , 

𝜕𝜕𝑥  𝐼,𝐽 2∆𝑥 
(7) 

 

where  𝑃�𝐼+1,   denotes  the  pressure  that  satisfies  the  pressure  condition  on  the  virtual  boundary.  If  the  virtual 

boundary  is  arranged  along  the  grid  points,  the  formula  𝑃�𝐼+1,𝐽  = 𝑝𝐼,𝐽    is  completed.  Otherwise,  𝑃�𝐼+1,𝐽    is 

estimated from the pressure at surrounding grid points and the boundary conditions on the virtual boundary. [11]. 
 

Figure 2. Grid points where the pressure condition is considered 

FLOW AROUND A PLATE OF INFINITESIMAL THICKNESS 

In order to validate the effectiveness of the 

present IBM, the flow around the moving plate 

of infinitesimal thickness is considered. The 

present IBM is compared to the original IBM 
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and the boundary-fitted grid approach (BFG). 

The computational domain is shown in Fig3. In 

order to reduce the number of grid points, the 

hierarchical Cartesian grid with level 2 is 

introduced. The grid resolution near the plate is 

∆𝑥 = ∆𝑦 = 0.025𝐷, 

where 𝐷 is the plate length. In this paper, the 

plate length is set as 𝐷 = 1. The time increment 

is ∆𝑡 = 0.001, the analysis is performed to non-

dimensional time 𝑡 = 100. The plate is placed 

vertically and the initial position of the plate 

center is (𝑥0, 𝑦0) = (8.0𝐷, 5.5𝐷). The plate is 

stationary until 𝑡 = 10, and moves to negative 𝑥 
direction from 𝑡 = 10 at the velocity of 𝑈𝑝𝑙𝑎𝑡𝑒 

= 0.25𝐷, and the plate stops at (𝑥0, 𝑦0) = 

(4.0𝐷, 5.5𝐷). So the moving velocity of the 

plate is written as Eq. (8). 

 

 

0.00𝐷 
𝑈𝑝𝑙𝑎𝑡𝑒(𝑡) = � 0.25𝐷 

0.00𝐷 

(0 ≤ 𝑡 < 10)  

(10 ≤ 𝑡 < 26) (8) 

(26 ≤ 𝑡 < 100)  

 

Figure 3. Computational domain for the moving plate of infinitesimal thickness 

The impulsive start determined by the uniform flow (𝑢 = 1, 𝑣 = 0, 𝑝 = 1) is adopted. On the inflow boundary 

(left boundary), the velocity is fixed by the uniform flow, and the pressure is imposed by the Neumann 

condition obtained by normal momentum equation. On the outflow boundaries (right, top and bottom boundaries), 

the velocity is extrapolated from the inner points and the pressure is obtained by the Sommerfeld radiation 

condition [12]. On the virtual boundary, the velocity condition is the nonslip (𝑢 = 𝑈𝑝𝑙𝑎𝑡𝑒 , 𝑣 = 0) condition. The 

Reynolds number is set as 𝑅𝑒 = 40. Note that the flow around the stationary plate which is equivalent to the 

above conditions is handled in the BFG. In this case, the plate is always stationary at (𝑥0, 𝑦0) = (5.5𝐷, 

5.5𝐷), and on the inflow boundary, the velocity is fixed by the uniform flow (𝑢 = 1.25, 𝑣 = 0). Other conditions 

are the same as the cases of the present IBM and the original IBM. In this paper, analysis by each approach is 

described as 

Case-1. BFG, 

Case-2. Original IBM, 

Case-3. Present IBM. 

Figures 4, 5 show the pressure contours around the plate at 𝑡 = 20 , 25. The center of the plate is located at (𝑥0, 

𝑦0) = (5.5𝐷, 5.5𝐷), (4.25𝐷, 5.5𝐷) respectively at each time. Figure 6 shows the pressure distributions on the 

center of the flow at 𝑡 = 20. As can be seen from Figs. 4-6, the unphysical pressure oscillations appear in Case-

2. By contrast, in Case-3, the pressure oscillations are suppressed and relatively smooth pressure distributions are 

obtained. However, the pressure distributions behind the plate in Case-2 and 3 are different from that in Case-1. 
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(a) Case-1 
 

(b) Case-2
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(c) Case-3 

Figure 4. Pressure contour around the plate at 𝑡 = 20 

(Case-1, Case-2 and Case-3) 
 

(a) Case-2 
 

(b) Case-3 

Figure 5. Pressure contour around the plate at 𝑡 = 25 

(Case-2 and Case-3) 
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(a) overall view 
 

(b) front of the plate 
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(c) behind of the plate 

Figure 6. Pressure distribution on the center of the flow at 𝑡 = 20 (Case-1, Case-2 and Case-3) 

Figure 7 shows the time history of the drag coefficient around 𝑡 = 20. In this paper, the drag coefficient is 

estimated by 

 

 
 

∫ 𝑝𝑥𝑑𝑠 + ∫   𝑟𝑥𝑑𝑠 
𝐶𝐷 =  𝑏  𝑏 , 

1 
𝜌 𝑈2𝑆 2   0   0 

(9) 

 

 

where 𝑏 denotes the virtual boundary, 𝑝𝑥 and 𝑟𝑥 is the 𝑥 direction components of the interpolated pressure and 

shear stress on the surface of the plate. 𝜌0 and 𝑈0 denote the reference density and velocity of the flow. In this 

paper, the plate placed vertically, therefore it is 𝑟𝑥 = 0. From Fig. 7, the drag coefficients are not stable in Case-

2 and Case-3. This is because the forcing points change by moving the virtual boundary beyond the computational 

grid. This influence is particularly noticeable in Case-3 where the pressure condition on the virtual boundary is 

considered. However, the drag coefficient in Case-3 is closer to the it in Case-1 than in Case-2. Therefore, the 

effectiveness of the present method can be confirmed. 
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Figure 7. Time history of the drag coefficient around 

𝑡 = 20 (Case-1, Case-2 and Case-3) 

Application to Overset Grid System 

In the previous section, it could be confirmed that the pressure oscillations near the virtual boundary of the moving 

plate are suppressed by the present IBM. In this session, the present method is combined with the overset grid 

system [13, 14] in order to reduce the influence by moving the virtual boundary beyond the computational grid 

in IBM. The Navier-Stokes equations are rewritten 

 
𝜕𝜕𝑢𝑖𝑖  

= 𝐹  −  
𝜕𝜕𝑝  

+ 𝐺 , (10) 
 

𝜕𝜕𝑡 𝑖𝑖 
𝜕𝜕𝑥𝑖𝑖 

𝑖𝑖 

𝜕𝜕𝑢𝑖𝑖 

 
1 𝜕𝜕2𝑢𝑖 

 
(11) 

𝐹𝑖𝑖  = −�𝑢𝑗𝑗  − 𝑐𝑗𝑗 � 
𝜕𝜕𝑥

 + , 𝑅𝑒 𝜕𝜕𝑥 𝜕𝜕𝑥 

𝑗𝑗 𝑗𝑗 𝑗𝑗 

 

based on the ALE formulation. Where, 𝑐𝑗𝑗 is the moving velocity component of the computational grid for the 

ALE method. In the overset grid system, 𝑐𝑗𝑗 = 0 at the main-grid because the ALE method is only applied to the 

sub-grid. 

In order to verify the present method combined with the overset grid system, the same flow analysis as the 

previous session is performed (Case 4). In this flow analysis, the sub-grid follows the moving plate, i.e. 𝑐𝑥 = 
𝑈𝑝𝑙𝑎𝑡𝑒 . 

Figure 8 shows the pressure contours around the plate at 𝑡 = 20. The center of the plate is located at (𝑥0, 𝑦0) = 

(5.5𝐷, 5.5𝐷). Figure 9 shows the pressure distribution on the center of the flow at 𝑡 = 20. As can be seen from Figs. 

8, 9, the pressure distribution behind the plate of Case-4 is in good agreement with the reference result [15-18]. 
 

(a) Case-1 
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(b) Case-4 

Figure 8. Pressure contour around the plate at 𝑡 = 20 

(Case-1 and Case-4) 
 

(a) overall view 
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(b) front of the plate 
 

(c) behind of the plate 

Figure 9. Pressure distribution on the center of the flow at 𝑡 = 20 (Case-1, Case-3 and Case-4) 

Figure 10 shows the time history of the drag coefficient around 𝑡 = 20. In Fig. 10, the oscillations of the drag 

coefficient that appeared in Case-3 are dramatically suppressed in Case-4. The drag coefficients at 𝑡 = 20 are 

𝐶𝐷 = 2.808 and 2.692 obtained by Case-1 and Case-4 respectively, and the error was 4.13%. From these results, 

it is concluded that the present method combined with the overset grid system is effective for the flow analysis 

including the moving plate of infinitesimal thickness. 
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Figure 10. Time history of the drag coefficient around 

𝑡 = 20 (Case-1, Case-3 and Case-4) 

CONCLUSIONS 

In this study, the IBM with the pressure 

condition was applied to a moving plate of 

infinitesimal thickness object and its 

effectiveness was verified. The results obtained 

by the present IBM are compared to the results 

obtained by the original IBM and the BFG 

approach. As a result, it is concluded that the 

present IBM is effective in suppressing the 

pressure oscillations near the virtual boundary 

that appeared in the original IBM. However, in 

the present and original IBM, the oscillations of 

the time history of the drag coefficients 

appeared because the forcing points change by 

moving the virtual boundary beyond the 

computational grid. In order to reduce the 

influence by moving the virtual boundary 

beyond the computational grid in IBMs, we 

proposed a method combining the IBM with 

pressure condition and the overset grid system. 

As a result, the oscillations of the drag 

coefficient were removed, and the pressure 

distributions around the plate were in good 

agreement with the reference result. From these 

results, we conclude that the present IBM 

combined with the overset grid system is 

effective for the analysis of the flow including 

the moving object of infinitesimal thickness. 
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